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Abstract

We present a novel graphical model approach for
a problem not previously considered in the ma-
chine learning literature: that of tracking with
ranked signals. The problem consists of track-
ing a single target given observations about the
target that consist of ranked continuous signals,
from unlabeled sources in a cluttered environ-
ment. We introduce appropriate factors to handle
the imposed ordering assumption, and also incor-
porate various systematic errors that can arise in
this problem, particularly clutter or noise signals
as well as missing signals. We show that infer-
ence in the obtained graphical model can be sim-
plified by adding bipartite structures with appro-
priate factors. We apply a hybrid approach con-
sisting of belief propagation and particle filter-
ing in this mixed graphical model for inference
and validate the approach on simulated data. We
were motivated to formalize and study this prob-
lem by a key task in Oceanography, that of track-
ing the motion of RAFOS ocean floats, using
range measurements sent from a set of fixed bea-
cons, but where the identities of the beacons cor-
responding to the measurements are not known.
However, unlike the usual tracking problem in
artificial intelligence, there is an implicit rank-
ing assumption among signal arrival times. Our
experiments show that the proposed graphical
model approach allows us to effectively leverage
the problem constraints and improve tracking ac-
curacy over baseline tracking methods yielding
results similar to the ground truth hand-labeled
data.

1 INTRODUCTION
We consider the problem of tracking a single target where
the observations, concerning the position of the target, con-
sist of ranked continuous signals from unlabeled sources in

a cluttered environment. We allow for various types of er-
ror that may occur in these observations: (a) a recorded
signal may correspond to a spurious signal instead of a true
signal, and (b) a signal may be lost and never recorded. We
present a novel graphical model approach for this problem.
Our graphical model is a mixed or hybrid model with both
discrete and continuous components. To perform proba-
bilistic inference in this mixed graphical model, we use
particle filtering for the continuous component which rep-
resents the location of the target, and belief propagation for
the discrete component which represents the data associa-
tion between the signals and the signals’ sources.

We were motivated to study the above problem formal-
ism by a mathematical abstraction of a key problem in
Oceanography: that of tracking RAFOS floats using ranked
range measurements. RAFOS floats (Rossby et al. , 1986;
Hancock & Speer, 2013) are low cost acoustically tracked
subsurface floating devices used to study ocean currents by
measuring the paths taken by fluid parcels in the ocean.
They also measure temperature and pressure along the way.
The typical mission times for these floats are on the order of
a few months to a few of years during which they don’t sur-
face, and hence it is not possible to locate or track these
floats via satellite (GPS) position fixes. In order to solve
this location or tracking problem, a moored (fixed) array
of sound sources, also known as beacons are used. These
moored sound sources or beacons produce and transmit one
sound signal per tracking cycle. The floats then record the
arrival times of these signals transmitted from the bea-
cons. These arrival times depend on the distance from
the sound source and the velocity of sound in the ocean,
and thus provide information about the location of the float
(since the sound sources or beacons are fixed and their lo-
cations are known). At any given instant, if distances of the
float from three beacons are known, this suffices to deter-
mine the position of the float. Thus if we could identify the
beacons corresponding to the received signals, we can then
track the course of the float.

The caveat is that while the arrival times are stored, the bea-
cons from which the respective signals originated is not



known. In addition, the storage capacity of each float is
limited and it only records a small number of these signal
arrival times each day. These signals have a natural order-
ing in that the beacon signals most likely to be stored origi-
nate from the closest beacons and are received (and stored)
in distance order. We are interested in inferring the iden-
tity of the beacons at each time step corresponding to the
few received ordered or “ranked” signals. This is a chal-
lenging task and currently, this information is hand-labeled
by oceanography researchers, with many months of effort.
Our paper provides an automated solution for this inter-
esting problem, and moreover provides a novel machine
learning problem abstraction of tracking with ranked sig-
nals, which would be of interest even from a purely ma-
chine learning standpoint.

We will nonetheless anchor our discussion of the tracking
with ranked signals problem to the RAFOS float tracking
problem for presentational reasons. Let us consider the
setup and assumptions of the above RAFOS float tracking
problem in greater detail. Each float’s tracking data con-
sists of its initial and final positions, and a fixed number of
earliest signal arrival times for each day. Figure 1 shows
the observed signal arrival times for a particular float over
the entire tracking period. There are s fixed beacons with
known positions. Each float in the ocean is equipped with
a receiver. Every day at a specified time, a float starts lis-
tening for sound signals transmitted by the beacons. The
float stores the arrival times of the first r(< s) signals it
receives and a confidence value for each signal, then shuts
off its receiver. Our goal is to use these arrival times to
track the position of the float over time. The model we
present includes the following kinds of errors that capture
key characteristics of this problem:

• The arrival times are subject to noise due to environ-
mental factors and recording equipment

• Signals from a beacon may never reach or be dropped
by the receiver, we call these errors missing values.

• The receiver may erroneously record ambient noise
as a signal from a beacon, and store that value. We
call these errors junk values or clutter. Figure 1 and
our analysis in the experiments section show that junk
values are very common and outnumber true signals
in the data.

While our focus is on the beacon association problem, it
should be noted that there are additional sources of error
such as those due to the Doppler effect, variations in the
speed of sound due to temperature and beacon depth or
clock drift in the receiver which have been investigated in
prior work(Wooding et al. , 2005; Hancock & Speer, 2013).
These would change the conditional probability distribu-
tions in the model we introduce in Figure 2 and incorporat-
ing these in our model is left as future work.

Contributions The main contributions of this work are
as follows:

• Our setting differs from prior work from a machine
learning standpoint due to the ordering condition im-
posed on the received signals, as described earlier.
Our model introduces novel ranking based factors
to enforce this condition, and we present an equiva-
lent bipartite model similar in structure to that used
in the data association literature (Williams & Lau,
2010) which can then be used for inference via mes-
sage passing. This contribution should be valuable for
other graphical model problems where ranking based
factors are involved.

• RAFOS float tracking has not previously been con-
sidered from a graphical model perspective; indeed,
(Hancock & Speer, 2013; Wooding et al. , 2005) label
data by hand. Our model in Figure 2 captures several
important characteristics of this problem and is also of
practical importance from an application standpoint.

• We evaluate our algorithm on simulated data and show
that our algorithm performs better than a baseline
model which does not take the ranking of signal ar-
rival times into account. We also present the results
of our algorithm on real world RAFOS float data and
demonstrate good agreement with hand-labeled data.

1.1 RELATED WORK

We now review prior work on tracking, and specifically
contrast our problem with the classical tracking problem.
A tracking algorithm can be viewed as computing the prob-
ability distribution of a system’s state xt given observations
yt. A common model for this is a Hidden Markov model
with hidden states xt. Inference using message passing
for this model leads to the well known Kalman filtering
and smoothing algorithms or the forward-backward algo-
rithm under different distributional assumptions. Another
common class of approaches to perform inference on such
models are particle filtering and other MCMC-based ap-
proaches (Oh et al. , 2009; Chertkov et al. , 2010).

In the RAFOS float tracking problem, from the perspec-
tive of the float, the problem resembles a multi-target track-
ing or data association problem, where the beacons are the
targets. In multi-target tracking, we try to track a number
of moving targets over time given some noisy information
about the set of observed locations at each time step, and
the challenge is to link the locations over time to obtain the
trajectory for each target. Classical approaches to multi-
target tracking assign a probability to each possible asso-
ciation of targets across time steps. The inference prob-
lem p(xt|yt) then requires summing over all possible such
associations and reduces to computing the permanent of a
matrix (Oh et al. , 2009; Chertkov et al. , 2010), which is
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(a) float #767
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(b) float #811

Figure 1: Observed signal arrival times for float #767 and #811 over the entire tracking period

known to be #P-complete (Valiant, 1979). The probabilis-
tic data association filter (Bar-Shalom, 1987; Bar-Shalom
et al. , 2009) collapses this state into a single Gaussian
at each time step to make the problem tractable. An-
other interesting line of work is multiple hypothesis track-
ing (Blackman, 2004). At each time step the algorithm
maintains a mixture of Gaussians for each target represent-
ing a distribution over its possible positions, and updates
the state by summing over all possible associations while
discarding components with low probability to make com-
putation tractable. Message passing algorithms which have
been shown to converge (Vontobel, 2013; Huang & Jebara,
2009) have also been proposed. (Cevher et al. , 2006) de-
veloped a particle filtering approach which uses only range
measurements, while MCMC algorithms that are fully
polynomial-time randomized approximation schemes (Jer-
rum et al. , 2004) have also been studied. Other approaches
include greedy approaches widely used in robotics, which
include choosing the data association with the maximum
likelihood (Thrun et al. , 2005), and nearest-neighbor meth-
ods where observations “closest” to expected observations
are kept and others are discarded. While simple, such
greedy approaches work poorly under relatively high noise
levels (Bar-Shalom et al. , 2009). Yet another interesting
line of work represents the state xt of the system using
distributions over permutations and uses group-theoretic
methods to approximate these distributions (Kondor et al.
, 2007; Huang et al. , 2009). Such approaches have been
investigated in the contexts of radar tracking, computer vi-
sion, and robotics.

We cannot directly apply these methods to the RAFOS float
tracking problem because the number of observed targets
(beacon arrival times) is small compared to the number of
beacons and thus most beacons are unobserved at each time
step. This is because if we can identify the beacons corre-

sponding to each arrival time, only a small number (three
in 2D space) of beacons are required to track the float’s po-
sition, and thus the float need only store the first few arrival
times while the number of beacons may be much larger.
Further, there may be regime changes, where a beacon goes
out of range and a previously unobserved beacon appears
in range which these methods cannot directly handle. How-
ever, since the closest beacons are the ones most likely to
be recorded and their values are received in order, the pro-
vided information may be sufficient for tracking. We show
in this paper that explicitly modeling the ordering assump-
tion among beacon times and the fact that there is an under-
lying latent variable – the float’s position – which connects
the targets, allows us to track the float.

We also note that multiple hypothesis tracking approaches
which maintain a mixture over the potential associations
are not required for our model for tracking with ranked sig-
nals. In a sense, in the RAFOS float tracking problem the
only true latent variable is the float’s position and the oth-
ers such as the beacon arrival times are derived from this.
In particular, the additional ordering assumption provides
a strong helpful constraint, since the only way the closest
beacon’s signal is not received first is if two signals were
close together and their ordering was changed due to am-
bient noise, if that signal is lost or if a junk signal was
recorded as the first. The first possibility does not affect
tracking since the two signals were already close, while
the probabilities of the latter two systematic errors can be
modeled in a principled manner with a graphical model ap-
proach. Thus, in the RAFOS tracking problem knowing the
initial position allows us to continue tracking the float with-
out needing a mixture model and in this sense, our model
for tracking with ranked signals is (computationally and
statistically) easier than the standard multiple-target track-
ing problem.
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Figure 2: Graphical Model for tracking with ranked signals

To investigate the question of the practical advantage of our
ordering constraint, which is a key difference from previ-
ous work, we consider a baseline model by dropping the
ranking assumption. Thus, any permutation is allowed as
a possible signal to signal source assignment, and is given
the same weight. This approach leads to a mixture over
possible assignments and we compare against this baseline
in our experiments.

2 GRAPHICAL MODEL
Our proposed graphical model for tracking with ranked
signals is shown in Figure 2. While Figure 2 expresses
our model as a directed graphical model (also known as a
Bayesian network), we will specify the probability distri-
bution not in terms of conditional probabilities but in terms
of local factors in the corresponding factor graph (see Fig-
ure 9 in appendix), since these will be used for inference
in the sequel. For simplicity of description, we assume that
target is in a 2-dimensional space, however it must be noted
that our model applies to the general case when the target
is in a d-dimensional space. We now describe each node
and factor in Figure 2.

At each time step, the target records the first r signals emit-
ted from s signal sources. It is possible that a signal from
a particular signal source may be lost and not detectable at
the target for the target to record. It is also possible that the
target may record a spurious signal if the spurious signal is
ranked higher than a true signal.

We indicate the position of the target by Xt ∈ R2. We
model the system’s dynamics as Xt+1 ∼ N (Xt, Σ), so
that we have the corresponding factor f(Xt, Xt+1) given
by

f(Xt, Xt+1) = (2π)−1|Σ|−1/2 exp
(
−1

2
∆T
t Σ−1∆t

)
(1)

where ∆t = Xt+1 −Xt.

We denote the signal characteristic (providing information
about the target) from signal source i by ti ∈ R, (1 ≤ i ≤
s). Note that in the context of RAFOS float tracking, this
would correspond to the arrival time of the sound signal
from beacon i. Some of these signals might be lost as noted
in the introduction, so that we use Bernoulli random vari-
ables mi ∈ {0, 1} to indicate whether or not the signal
from signal source i was lost. Thus, if mi = 1, the signal
was lost and ti is set to∞ (so that signal source iwill be ig-
nored in (3)). Otherwise, ti follows some given distribution
depending on signal source i and current the target loca-
tion Xt. For example, in the RAFOS tracking problem, ti
follows a Gaussian distribution centered on the time taken
for a sound signal to travel from location bi to location Xt,
given by ‖Xt−bi‖2vs

, where bi is the beacon’s location and vs
is the speed of sound. We capture this interaction between
the stateXt, the estimated arrival time ti, and the lost signal
indicator mi via the factors gi(Xt, ti,mi) (1 ≤ i ≤ s):

gi(Xt, ti,mi) =

 1
σ
√

2π
e−

„
ti−
‖Xt−bi‖2

vs

«2

2σ2 if mi = 0

1 if mi = 1
(2)

Note that ti ∈ R, (1 ≤ i ≤ s) are not directly observed,
and hence latent variables in the model. Next, we consider
the observed signals which we denote by Ti(1 ≤ i ≤ r).
Since these signals are stored sequentially, we have that
T1 < T2 < · · · < Tr by our ranking assumption. But some
of these signals may not correspond to signals from actual
signal sources at all, and could be purely due to clutter, as
noted in the introduction. We thus use Bernoulli random
variables ci ∈ {0, 1} to indicate whether or not the signal
Ti corresponds to clutter. By the assumptions made in the
previous section, if the signal from the signal source that
is supposed to be recorded first is not lost, i.e. ti < ∞,
and moreover the value stored as Ti is not junk, i.e. ci = 1
then Ti must be the minimum of {tj}ij=1. Otherwise, a
junk clutter value is recorded. We assume these clutter val-
ues follow some fixed distribution, which we denote us-
ing the random variables ni. For instance, in the RAFOS
float tracking problem we assume junk clutter value are dis-
tributed uniformly over a specified interval.

We represent this interaction of Tj with the clut-
ter, lost/missing, and signal variables, via the factor
f(Tj , c1, c2, . . . , cj , nj , t1,m1, t2,m2, . . . , ts,ms):

f(Tj , c1, c2, . . . , cj , nj , t1,m1, t2,m2, . . . , ts,ms)

=

{
δ(Tj − t(j)) if cj = 0
δ(Tj − nj) if cj = 1

(3)

where we use t(j) to denote the (j −
∑j−1
l=1 cl)

th smallest
element of the set {tl}. This is a degenerate conditional



probability distribution for Ti with mass only at the appro-
priate ti or ni. Recall that δ is the Dirac delta function,
which has the following properties:

δ(x) =

{
0 if x 6= 0
undefined if x = 0

,

∫
δ(x)dx = 1,∫

f(x)δ(x)dx = f(0) (4)

2.1 INFERENCE WITH min FACTORS

The key novelty of our graphical model are the high order
factors fj ,which depend on the r first ranked signals. We
consider this model in the simplified case, with no missing
signals and no clutter, and show how inference via message
passing can be performed in this model. In this setting, the
factor fj(Tj , t1, t2, . . . , ts) is given by

fj(Tj , t1, t2, . . . , ts) = δ(Tj − t(j)) (5)

where t(j) is the jth minimum element of {t1, t2, . . . , ts}.
Direct computation of messages for high order factors in
general requires computing an s − 1-dimensional integral.
However, our fj , which correspond to the j-th minimum
function, can be rewritten as a sum of products as,

fj =
s∑

k=1

δ(tk − Tj)∑
(A,B)∈Sk

∏
a∈A

1(ta < Tj)
∏
b∈B

1(tb > Tj) (6)

where Sk = {(A,B) ⊆ [s]× [s] : A ∪B = [s] \ {k}, A ∩
B = ∅, |A| = j − 1, |B| = s− j} and [s] = {1, 2, . . . , s}
Then, as we show in the appendix, the multidimensional in-
tegral, comprising messages in a message passing inference
algorithm, can be computed using only one-dimensional in-
tegrals and turn out to have the form:

µfj→ti(ti) =δ(ti − Tj)h1(Tj) + 1(ti < Tj)h2(Tj)
+ 1(ti > Tj)h3(Tj)

(7)

where each hj can be computed inO(sr) time via dynamic
programming. When r is fixed, as in the RAFOS float
tracking problem – since with r = 3 at most three known
nearest beacons we can obtain the floats position and the
overall number of beacons s is irrelevant – these messages
can effectively be computed in polynomial time. This result
is in the vein of previous work on reductions for high order
potentials such as (Tarlow et al. , 2010). Handling high or-
der min factors in this way is a novel result and can poten-
tially be applied to other problems where such ranking fac-
tors are involved. Due to their technical complexity how-
ever, we defer further discussion of these factors and the
details of the message passing algorithm to Appendix A.2.
Instead, in the next section, we consider a reduction of our

graphical model, with many such min factors, to an auxil-
iary model with a bipartite graph structure, which results in
easier to implement algorithms.

2.2 REDUCTION TO BIPARTITE FACTORS

In this section, we show that our Bayesian network can be
represented via a simpler conditional random field with fac-
tors that enforce a bipartite matching constraint. We do this
by introducing latent variables Si, Rj (Figure 3) to repre-
sent the association between signal sources and signals.

One large factor. First, consider the simplified case with
no clutter and no missing signals. In this case, our graph-
ical model is equivalent to one with the following large
factor f connecting the t1, t2, . . . , ts and T1, T2, . . . , Tr
(instead of the fj of (3) connecting tj to the {Ti}),
f(t1, t2, . . . , ts, T1, T2, . . . , Tr) as

f(t1, t2, . . . , ts, T1, T2, . . . , Tr)

=
∑

Π∈{r-permutations
of {1,2,...,s}}


r∏
j=1

δ(tΠ(j) − Tj)
∏
k 6∈Π

1(tk > Tr)


(8)

We prove this by showing that the factor f defined in (8)
above satisfies:

f =
r∏
j=1

fj (9)

where f1, f2, . . . , fj are the factors in eq (3). For
any {t1, t2, . . . , ts}, if the r smallest elements are not
T1, T2, . . . , Tr then we can see that f = 0 and

∏r
j=1 fj =

0. When the r smallest elements of {t1, t2, . . . , ts} are
T1, T2, . . . , Tr, where ti1 = T1, ti2 = T2, . . . , tir = Tr,
then we can see that f =

∏r
j=1 δ(tij − Tj) =

∏r
j=1 fj .

Auxiliary Bipartite Graph. f has a special structure in
that it sums over partial matchings and for each match-
ing, it can be written as a product of pairwise factors, rep-
resented by the snippet of a pairwise conditional random
field shown in Figure 3. To represent the matching, we use
variables Si (1 ≤ i ≤ s) corresponding to signal sources:
these take values in {1, 2, . . . , r,L}, indicating which of
the r received signals Si corresponds to, or a value of L
if the signal was late, i.e. not in the first r and was thus
not received. On the other side of the matching, we have
variables Rj (1 ≤ j ≤ r) corresponding to received sig-
nals Tj : these take values in {1, 2, . . . , s} indicating which
of the signal sources Tj originated from. Thus, Tj is the
signal corresponding to source Rj , while TSi is the signal
corresponding to source i.

The factors f(Si, Rj) enforce these bipartite matching con-



straint:

f(Si, Rj) =

0
if Si = j, Rj 6= i or
Si 6= j, Rj = i

1 otherwise
(10)

And the factor f(Si) is given by

f(Si) =

{
δ(ti − TSi) if Si 6= L

1(ti > Tr) if Si = L
(11)

Then, on marginalizing Si andRj , we obtain the factor f as
in equation (8). Thus, we can replace the factor f of equa-
tion (8) by this auxiliary graphical model and perform mes-
sage passing on this graphical model. This leads to a model
similar to the pairwise models proposed to approximate
the permanent, which shows up in the usual data associ-
ation problem (Pasula et al. , 1999; Huang & Jebara, 2009;
Oh et al. , 2009; Chertkov et al. , 2010; Vontobel, 2013).
We can now consider the difference between our bipartite
model and the one used to approximate the permanent (in
(Huang & Jebara, 2009)): the sum in eq (8) is over partial
permutations while that in (Huang & Jebara, 2009) involves
full permutations. Our model consequently involves an ad-
ditional value L to indicate that a signal is “late”, leading
to the node factors as shown in eq (11) which use indicator
functions to indicate that a sent signal may not be in the top
r ranked signals, and thus encodes the min factors required
by our model.

Generalization to Factors with Missing Values, Clut-
ter. We now generalize this argument to yield a simi-
lar conditional random field with pairwise factors for the
complete model with missing values and clutter. Each Si
(1 ≤ i ≤ s) takes values 1, 2, . . . , r,L,M, where a number
indicates which signal it corresponds to, L indicates that the
signal is ranked too low to be observed, and M indicates that
the signal is missing and undetectable at the receiver. Each
Rj (1 ≤ j ≤ r) takes values 1, 2, . . . , s,C, where a num-
ber indicates the signal’s source, and C indicates it’s clut-
ter. The factors f(Si, Rj) still enforce the bipartite match-
ing constraint of equation (10). The factors f(nj , Rj) are
given by

f(nj , Rj) =

{
PCδ(nj − Tj) if Rj = C

1− PC otherwise
(12)

where PN is the probability that the signal is clutter.

And the factor f(ti, Si) is given by

f(ti, Si) =


1− PD if Si = M

PD1(ti > Tr) if Si = L

PDδ(ti − TSi) otherwise
(13)

where PD is the probability that the signal can be detected

XtXt−1 Xt+1

S1 S2 Ss. . .

R1 R2 Rr. . .

Figure 3: A conditional random field representing the dis-
tribution of r earliest arriving signals

Finally, we marginalize out t1, t2, . . . , ts and
n1, n2, . . . , nr, so that we can represent the condi-
tional distribution as a simpler pairwise conditional
random field as in Figure 3, where no factor uses the delta
function, simplifying computation.

In the conditional random field shown in Figure 3, the fac-
tor f(Xt, Si) is given by

f(Xt, Si) =


1− PD if Si = M

PD
∫ +∞
Tr

pi(T |Xt) dT if Si = L

PDpi(TSi |Xt) otherwise
(14)

In the RAFOS tracking problem pi(T |Xt) =

1
σ
√

2π
exp

{
−
“
T− ‖Xt−bi‖2vs

”2

2σ2

}
is the distribution of

signal arrival time T given the location Xt of the target,
and the factor f(Xt, Rj) is given by

f(Rj) =

{
PCpN (Tj) if Rj = C

1− PC otherwise
(15)

where pN (T ) is the distribution of clutter signal arrival
time.

Alternative Derivation of the Bipartite Model Here we
show an alternative and more intuitive derivation of the bi-
partite model assuming that the number of clutter signals
follows a Poisson distribution with parameter λ and clut-
ter signals are independent and identically distributed. We
also assume that the distribution of signals from different



signal sources are independent, and whether or not a signal
is missing and non-detectable at the target is independent
of all other signals.

Assume that the target’s location isX , and there areN clut-
ter signals, the likelihood of observing T1 ≤ T2 ≤ · · · ≤
Tr with labels S1, Sr, . . . , Ss and R1, R2, . . . , Rr is pro-
portional to

`N =
N !

(N −
∑

1(Rj = C))!
(1− PD)

P
1(Si=M)P

P
1(Si 6=M)

D(∫ +∞

Tr

pN (t) dt
)N−P 1(Rj=C) ∏

Rj=C

pN (Tj)

∏
Si 6=L,M

pi(TSi |X)
∏
Si=L

∫ +∞

Tr

pi(t|X) dt (16)

Marginalizing out N we then have∑
N

e−λ
λN

N !
`N ∝λ

P
1(Rj=C)(1− PD)

P
1(Si=M)

P
P

1(Si 6=M)
D

∏
Rj=C

pN (Tj)
∏

Si 6=L,M

pi(TSi |X)

∏
Si=L

∫ +∞

Tr

pi(t|X) dt (17)

Thus if we set

PC =
λ

1 + λ
(18)

then it is clear that we can represent this distribution using
the conditional random field shown in Figure 3.

2.3 INFERENCE

We use a hybrid particle filtering and belief propagation
approach. For propagating information across time steps,
i.e. between the nodes Xt−1 and Xt, we use particle fil-
tering (Doucet & Johansen, 2009). Particle based methods
are simple to implement for tracking with range measure-
ments (Cevher et al. , 2006). Such methods have also been
widely used in robotics (Thrun et al. , 2005).

The distribution for eachXt is represented by a set of parti-
cles, we use message passing in the graphical model shown
in Figure 3 to compute P (T1, T2, . . . , Tr|Xt), which is
given by the partition function and can be approximated
by the Bethe free energy (Huang & Jebara, 2009). In this
graphical model, message passing equations have a simple
form where each iteration isO(sr) (Huang & Jebara, 2009;
Williams & Lau, 2010), and message passing converges to
a unique fixed point (Huang & Jebara, 2009; Williams &
Lau, 2010; Vontobel, 2013). Previous work (Huang & Je-
bara, 2009; Williams & Lau, 2010; Chertkov et al. , 2010)
has shown this strategy to be very effective.

Algorithm 1 Algorithm for tracking with ranked signals

1: function TRACKWITHRANKEDSIGNALS(X0,
{T (i)

1 ≤ T (i)
2 ≤ · · · ≤ T (i)

r }ni=1)
2: Np ← number of particles to use
3: p[Np]← each particle is initialized to X0

4: w[Np] . each particle’s weight
5: for i = 1; i ≤ n; + + i do
6: for j = 0; j 6= Np; + + j do
7: p[j]← SAMPLE(P (Xt|Xt−1 = p[j]))
8: w[j]← P (T (i)

1 , T
(i)
2 , . . . , T

(i)
r |p[j]) .

computed using belief propagation in the conditional
random field in Figure 3

9: end for
10: p←RESAMPLE(p,w) . particle filter

resampling
11: end for
12: end function

An implementation of the tracking algorithm to estimate
X1, X2, . . . , Xn where we are given the initial position of
the targetX0, and n observations of ranked signals {T (i)

1 ≤
T

(i)
2 ≤ · · · ≤ T (i)

r }ni=1 is given in Algorithm 1.

3 EXPERIMENTS
We present experiments on two kinds of datasets: simu-
lated data generated using our model (Figure 3) and real
world data from RAFOS floats.

3.1 SIMULATIONS

We simulate tracking RAFOS floats using ranked contin-
uous range measurements with our method. At each time
step, the target records the arrival times of the first 4 signals
emitted from 10 fixed beacons. There is a fixed probability
that a signal may not be detectable at the target, and the tar-
get may record the arrival time of a spurious signal (clutter)
if the spurious signal arrives before an actual signal.

3.1.1 SIMULATION OF TRACKING DIFFERENT
TRAJECTORIES

Figure 4a shows our algorithm tracking a target moving in
a straight line: the x and y axes correspond to the x and
y coordinates of the 2D location of the signal. The corre-
sponding signal arrival times are shown in Figure 4b. Simi-
larly, Figure 5a shows our algorithm tracking a target mov-
ing in a spiral, signal arrival times are shown in Figure 5b.
In the simulations, there are 10 signal sources and 4 sig-
nal arrival times. Clutter arrival times are uniformly dis-
tributed on a predefined interval, and the number of clutter
signals follows a Poisson distribution with parameter 4, so
that PC = 4

1+4 = 0.8. The signal arrival time distribu-
tion pi has parameter σ = 0.02, and PD = 0.7. We can
see that our algorithm correctly tracks the target when the
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Figure 5: Our algorithm tracking a target moving in a spiral

association between signal arrival times and signal sources
changes.

3.1.2 COMPARISON WITH THE BASELINE
ALGORITHM

We compare our algorithm against a baseline algorithm
which does not take into account that signal arrival times
are ranked. The overall structure of the baseline model is
the same as that of the graphical model shown in Figure 3,
however the factor f(Xt, Si) is given by

f(Xt, Si) =

{
PDpi(TSi |Xt) if Si 6= L and Si 6= M

1− PD if Si = L or Si = M
(19)

so that the implicit ranking of signal arrival times is not
taken into account.

Figure 6b shows the mean squared error against the noise
level when tracking the straight trajectory shown in Fig-
ure 6a. The noise level is indicated by a parameter λ such
that PC = λ

1+λ . The parameter λ corresponds to the Pois-
son parameter for the number of clutter signals (see Ap-
pendix). Signal arrival time distribution pi has parameter
σ = 0.02, and PD = 0.7. We can see that our algorithm
outperforms the baseline algorithm.

3.2 RAFOS FLOAT DATA

We present tracking results on real world RAFOS float data
which consists of ranked continuous signal arrival times.
We compare the results of our algorithm against hand la-
beled data where each signal is hand labeled with a par-
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Figure 6: Simulation comparing our proposed algorithm
and the baseline

ticular signal source or as clutter. In RAFOS float mis-
sions, after a float is released at a known location to start
its mission, it records a fixed number of arrival times from
a set of beacons whose positions are fixed and known. The
dataset presented here are collected in the DIMES (Di-
apycnal and Isopycnal Mixing Experiment in the Southern
Ocean) project (Hancock & Speer, 2013), which is aimed
at measuring diapycnal and isopycnal mixing in the South-
ern Ocean, along the tilting isopycnals of the Antarctic Cir-
cumpolar Current. In our dataset, the float records 4 earliest
signal arrival times, and there are 10 beacons. The floats are
first released off the western coast of South America. There
were just two floats — #767 and #811 — for which at least
three beacon signals were recorded at all time steps (note
that at least three beacon signals are required to uniquely
identify the 2D position of the float), and accordingly, we
present our results on tracking these two floats. Their sig-
nal arrival times are shown in Figure 1. We compare our
algorithm’s results to a manual tracking procedure where
each signal is hand labeled to its source or as noise based
on intuition and some apriori knowledge of the physical
factors (geometry of ocean basin and acoustic array, basic
knowledge of current directions etc.) at play.

Note that the true locations of the RAFOS floats are not
known and that the hand labeled data only contains the
associations between signal arrival times and their cor-
responding signal sources (or whether they are clutter).
Hence, we obtain a trajectory for the hand labeled data us-
ing a simple particle filter. At each time step T1 ≤ T2,≤
· · · ≤ Tr and R1, R2, . . . , Rr are known, so the weight of
a particle at X is given by

w(X) ∝
∏

1≤j≤r

pRj (Tj |X) (20)

When running our proposed algorithm and the one using
hand labeled data for RAFOS float tracking, we set PC =
0.5, PD = 0.9, σ = 5. Although in the real environment
the speed of sound depends on the depth of the RAFOS
float and other environmental factors, in our experiments
we set vs = 1.5 km/s across all cases.
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Figure 7: Trajectory of float #767 estimated by our proposed algorithm versus using hand labeled data
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Figure 8: Trajectory of float #811 estimated by our proposed algorithm versus using hand labeled data

The results for longitude and latitude of float #767 and
#811 estimated by our algorithm versus using hand labeled
data are shown in Figure 7 and Figure 8 respectively. Ad-
ditional results for other floats in the DIMES project are
presented in the appendix. We observe good agreement
between the tracks estimated using hand labeled data and
using our method indicating that our method recovers the
associations. We can also see that our algorithm continues
to track the target when the set of associated signal sources
changes.

4 CONCLUSIONS
We have presented a novel graphical model approach for
the problem of tracking with ranked signals which was able
to capture certain problem specific features easily. The
key novelty in the model, from a machine learning point
of view, was the presence of ranking-based factors. We
have provided a novel bipartite construction which allows
for easy inference via message passing for such factors.
While our model and approach were motivated by a par-
ticular application, the contributions of this paper should

be applicable to other problems where ranking based high-
order factors are involved.

We experimentally showed that our method effectively
leverages the varied problem constraints to improve track-
ing accuracy over baseline tracking methods. We ap-
plied our method for tracking with ranked signals to a key
Oceanography problem of tracking RAFOS floats in the
ocean and thus provide an automated solution to a problem
which has previously required significant manual effort.
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Figure 9: Factor graph corresponding to Figure 2

A APPENDIX

A.1 MESSAGE PASSING EQUATIONS FOR
BIPARTITE GRAPH

We use message passing for inference in the factor graph
shown in Figure 10 where at time step t T1, T2, . . . , Tr are
observed. In the following description of message passing
at time step t we sometimes omit the t subscript for nota-
tional conveniences.

For each Si, the message νSi→Si,Rj to the factor f(Si, Rj)
is

νSi→Si,Rj = µSi,Xt,Tr→Si
∏

1≤J≤r
J 6=j

µSi,RJ→Si (21)

the message µSi,Rj→Si from the factor f(Si, Rj) is

µSi,Rj→Si =
∑
Rj

f(Si, Rj) νRj→Si,Rj (22)

the message νSi→Si,Xt,Tr to the factor f(Si, Xt, Tr) is

νSi→Si,Xt,Tr =
∏

1≤J≤r

µSi,RJ→Si (23)

the message µSi,Xt,Tr→Si from the factor f(Si, Xt, Tr) is

µSi,Xt,Tr→Si = (24)∫
f(Si, Xt, Tr) νXt→Si,Xt,TrνTr→Si,Xt,Tr dXt (25)

For each Rj , the message νRj→Si,Rj to the factor

R1,t R2,t Rrt,t. . .

T1,t T2,t Trt,t

XtXt−1 Xt+1

S1,t S2,t Sst,t. . .

. . .

Figure 10: A factor graph representing the distribution of r
earliest arriving signals in the bipartite model

f(Si, Rj) is

νRj→Si,Rj = (26)

µR1,R2,...,Rr,N→RjµTj ,Rj ,Xt→Rj
∏

1≤I≤s
I 6=i

µSI ,Rj→Rj (27)

the message µSi,Rj→Rj from the factor f(Si, Rj) is

µSi,Rj→Rj =
∑
Si

f(Si, Rj) νSi→Si,Rj (28)

the message νRj→Tj ,Rj ,Xt to the factor f(Tj , Rj , Xt) is

νRj→Tj ,Rj ,Xt = µR1,R2,...,Rr,N→Rj

∏
1≤I≤s

µSI ,Rj→Rj

(29)
the message µTj ,Rj ,Xt→Rj from the factor f(Tj , Rj , Xt)
is

µTj ,Rj ,Xt→Rj =
∫
f(Tj , Rj , Xt) νXt→Tj ,Rj ,Xt dXt

(30)
the message νRj→R1,R2,...,Rr,N to the factor
f(R1, R2, . . . , Rr, N) is

νRj→R1,R2,...,Rr,N = µTj ,Rj ,Xt→Rj
∏

1≤I≤s

µSI ,Rj→Rj

(31)



the message µR1,R2,...,Rr,N→Rj from the factor
f(R1, R2, . . . , Rr, N) is

µR1,R2,...,Rr,N→Rj = (32)∑
{R1,...,Rr}\{Rj}

∑
N

f(R1, . . . , Rr, N) (33)

νN→R1,...,Rr,N

∏
1≤J≤r
J 6=j

νRJ→R1,...,Rr,N

(34)

For N , the message νN→N to the factor N is

νN→N = µR1,R2,...,Rr,N→NµN,Tr→N (35)

the message µN→N from the factor N is

µN→N =
∑
N

f(N) (36)

the message νN→R1,R2,...,Rr,N to the factor
f(R1, R2, . . . , Rr, N) is

νN→R1,R2,...,Rr,N = µN→NµN,Tr→N (37)

the message µR1,R2,...,Rr,N→N from the factor
f(R1, R2, . . . , Rr, N) is

µR1,R2,...,Rr,N→N = (38)∑
R1,...,Rr

f(R1, . . . , Rr, N)
∏

1≤J≤r

νRJ→R1,...,Rr,N (39)

the message νN→N,Tr to the factor f(N,Tr) is

νN→N,Tr = µN→NµR1,R2,...,Rr,N→N (40)

the message µN,Tr→N from the factor f(N,Tr) is

µN,Tr→N =
∑
N

f(N,Tr) (41)

For Xt, the message νXt→Xt−1,Xt to the factor
f(Xt−1, Xt) is

νXt→Xt−1,Xt = (42)

µXt,Xt+1→Xt

∏
1≤I≤s

µSI ,Xt,Tr→Xt
∏

1≤J≤r

µTJ ,RJ ,Xt→Xt

(43)

the message µXt−1,Xt→Xt from the factor f(Xt−1, Xt) is

µXt−1,Xt→Xt =
∫
f(Xt−1, Xt) νXt−1→Xt−1,Xt dXt−1

(44)
the message νXt→Xt,Xt+1 to the factor f(Xt, Xt+1) is

νXt→Xt,Xt+1 = (45)
µXt−1,Xt→Xt (46)∏
1≤I≤s

µSI ,Xt,Tr→Xt
∏

1≤J≤r

µTJ ,RJ ,Xt→Xt

(47)

the message µXt→Xt,Xt+1 from the factor f(Xt, Xt+1) is

µXt→Xt,Xt+1 =
∫
f(Xt, Xt+1) νXt+1→Xt,Xt+1 dXt+1

(48)
the message νXt→Si,Xt,Tr to the factor f(Si, Xt, Tr) is

νXt→Si,Xt,Tr = (49)
µXt−1,Xt→XtµXt,Xt+1→Xt (50)∏
1≤I≤s
I 6=i

µSI ,Xt,Tr→Xt
∏

1≤J≤r

µTJ ,RJ ,Xt→Xt

(51)

the message µSi,Xt,Tr→Xt from the factor f(Si, Xt, Tr) is

µSi,Xt,Tr→Xt =
∑
Si

f(Si, Xt, Tr) νSi→Si,Xt,Tr (52)

the message νXt→Tj ,Rj ,Xt to the factor f(Tj , Rj , Xt) is

νXt→Tj ,Rj ,Xt = (53)
µXt−1,Xt→XtµXt,Xt+1→Xt (54)∏
1≤I≤s

µSI ,Xt,Tr→Xt
∏

1≤J≤r
J 6=j

µTJ ,RJ ,Xt→Xt

(55)

the message µTj ,Rj ,Xt→Xt from the factor f(Tj , Rj , Xt)
is

µTj ,Rj ,Xt→Xt =
∑
Rj

f(Tj , Rj , Xt) νRj→Tj ,Rj ,Xt (56)

A.2 MESSAGE PASSING FOR HIGH ORDER min
FACTORS

Recall that the factor fj(Tj , t1, t2, . . . , ts) is given by

fj(Tj , t1, t2, . . . , ts) = δ(Tr − tk) (57)

where tk is the jth minimum element of {t1, t2, . . . , ts}.
We denote this factor by fj .

Direct computation of messages in this high order factor
graph would require computing an s− 1-dimensional inte-
gral. However, our fj , which correspond to the j-th mini-
mum function, can be rewritten as a sum of products as,

fj =
s∑

k=1

δ(tk − Tj)∑
(A,B)∈Sk

∏
a∈A

1(ta < Tj)
∏
b∈B

1(tb > Tj) (58)

where Sk = {(A,B) ⊆ [s]× [s] : A ∪B = [s] \ {k}, A ∩
B = ∅, |A| = j − 1, |B| = s− j} and [s] = {1, 2, . . . , s}
The outer sum represents the s different cases where each



element of {t1, t2, . . . , ts} can be the jth smallest. Suppose
tk is the jth smallest and is equal to Tj . Then, the remaining
{tl|l 6= k} are partitioned into 2 sets, where every tl in one
set is smaller than tk and while each tl in the other is larger.
There are

(
s−1
j−1

)
such partitions. Thus the fj corresponds

to a sum of products of O(s
(
s−1
j−1

)
) terms.

The message µfj→ti(ti) from the factor fj(1 ≤ j ≤ r) to
the variable ti(1 ≤ i ≤ s) is given by:

µfj→ti(ti) =
∫  ∏

1≤l≤s
l 6=i

νtl→fj (tl)


f(Tj , t1, t2, . . . , ts) d . . . t︸ ︷︷ ︸

except dti

(59)

=
∫  ∏

1≤l≤s
l 6=i

νtl→fj (tl)

 δ(Tj − tk) d . . . t︸ ︷︷ ︸
except dti

(60)

where tk is the jth smallest element of {t1, t2, . . . , ts}, and
νtl→fj (tl) is the message from tl to fj .

For computing µfj→ti(ti), fj can be written as the sum of
the following terms:

fj = δ(ti − Tj)
∑
A,B

∏
a∈A

1(ta < Tj)
∏
b∈B

1(tb > Tj)

(61)

+
∑
k 6=i

δ(tk − Tj)
∑
A,B

∏
a∈A

1(ta < Tj)
∏
b∈B

1(tb > Tj)

(62)

Then, the multidimensional integral can be written as sum
of products of unidimensional integrals. The final compu-
tation of the message requires a sum of O(s

(
s−1
j−1

)
) terms

as,

µfj→ti(ti) = δ(ti − Tj)h1(Tj)
+ 1(ti < Tj)h2(Tj) + 1(ti > Tj)h3(Tj) (63)

where

h1(Tj) =
∑
A,B

∏
a∈A

(∫ Tj

−∞
νta→fj (ta) dta

)
(64)∏

b∈B

(∫ +∞

Tj

νtb→fj (tb) dtb

)
(65)

h2(Tj) =
∑

A,B,i∈A

∏
a∈A,a6=i

(∫ Tj

−∞
νta→fj (ta) dta

)
(66)∏

b∈B

(∫ +∞

Tj

νtb→fj (tb) dtb

)
(67)

h3(Tj) =
∑

A,B,i∈B

∏
a∈A

(∫ Tj

−∞
νta→fj (ta) dta

)
(68)∏

b∈B,b6=i

(∫ +∞

Tj

νtb→fj (tb) dtb

)
(69)

For r such factors fj , if messages are computed di-
rectly, each iteration of message passing will require
O(
∑r
j=1

(
s
j

)
) computation. Note that only 2s unidimen-

sional integrals need to be computed, and the remainder
of the computation corresponds to computing the value
of elementary symmetric polynomials, which corresponds
to sums of all combinations. To compute a symmetric
polynomial

∑
A∈{1,2,...,n}
|A|=k

∏
a∈A ca which sums over all

k-combinations of {c1, c2, . . . , cn}, we can use dynamic
programming to find the coefficient of xk in

∏n
i=1(x+ ci),

and this can be done in O(n2) time.

A.2.1 FULL MODEL WITH CLUTTER

We handle two kinds of systematic noise in this model:
losses from the sender and clutter. Losses are handled by
m1,m2, . . . ,ms in Figure 9.

Clutter can be incorporated in this model through the factor
f ′k(Tk, t1, t2, . . . , ts, J1, J2, . . . , Jk) as

f ′k(.) =

{
δ(Tr − tl) if Jk = 0
1 if Jk = 1

(70)

where tl is the (k −
∑
i Ji)

th minimum element of
{t1, t2, . . . , ts}. This is identical to f from the previous
section if the Ji are all zero. If Jk = 1, i.e. the current
message is clutter, then we assume a uniform distribution
over Tk. If some previous received message was clutter, Tk
will take a lower minimum value.



Then, the factor can be written down in terms
of the factors f , from the previous section, as
f ′k(Tk, t1, t2, . . . , ts, J1, J2, . . . , Jk):

f ′k(.) = fk−
P
i Ji

(Tk, t1, t2, . . . , ts) (71)

Then, the messages from fk to ti can be written as:

ν′f ′k→ti
=
∑
Ji

νfk−Pi Ji→tiπlµJl→f ′k (72)

where the summation is over the values 0 or 1 for each Ji.

Messages from f ′k to Jl can be written as:

ν′f ′k→ti
=
∑
Ji,i6=l

∫
fk−

P
i Ji

dt1 . . . dts (73)

Thus, we can precompute the messages for fk in polyno-
mial time, and we can compute these messages in O(2r)
additional time.

A.3 ADDITIONAL EXPERIMENTAL RESULTS
FOR RAFOS FLOAT DATA

Here we present more additional experimental results for
tracking RAFOS floats using our proposed method. When
there are at least three actual signal arrival times at each
time step, such as float #767 and float #811 (Figure 1), it is
possible to estimate a unique track for the float over the en-
tire period of the float’s mission (Figure 7 and 8). However,
if at some point during a float’s mission that there are only
two actual signal arrival times for a certain period, then nei-
ther using hand labeled data nor our proposed method can
uniquely determine the float’s location.

An example for float #759 is given here. The signal arrival
times for float #759 are shown in Figure 11, where there ex-
ists periods of time during float #759’s mission when only
at most two signal arrivals are available. As shown in Fig-
ure 12, we get different results in different runs of the sim-
ple particle filter algorithm using hand labeled data (blue),
and our proposed algorithm agrees with hand labeled data
when there are at least three signal arrival times available.
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Figure 11: Observed signal arrival times for float #759 over
the entire tracking period
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Figure 12: Results of different runs of the simple particle
filter algorithm using hand labeled data (blue) versus our
proposed algorithm (red) for float #759
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