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Abstract

We present a novel method for frequentist statistical inference
in M -estimation problems, based on stochastic gradient de-
scent (SGD) with a fixed step size: we demonstrate that the
average of such SGD sequences can be used for statistical
inference, after proper scaling. An intuitive analysis using the
Ornstein-Uhlenbeck process suggests that such averages are
asymptotically normal. To show the merits of our scheme, we
apply it to both synthetic and real data sets, and demonstrate
that its accuracy is comparable to classical statistical methods,
while requiring potentially far less computation.

1 Introduction
In M -estimation, the minimization of empirical risk func-
tions (RFs) provides point estimates of the model parameters.
Statistical inference then seeks to assess the quality of these
estimates; e.g., by obtaining confidence intervals or solving
hypothesis testing problems. Within this context, a classical
result in statistics states that the asymptotic distribution of
the empirical RF’s minimizer is normal, centered around the
population RF’s minimizer (van der Vaart, 2000). Thus, given
the mean and covariance of this normal distribution, we can
infer a range of values, along with probabilities, that allows
us to quantify the probability that this interval includes the
true minimizer.

The Bootstrap (Efron, 1982; Efron and Tibshirani, 1994)
is a classical tool for obtaining estimates of the mean and co-
variance of this distribution. The Bootstrap operates by gener-
ating samples from this distribution (usually, by re-sampling
with or without replacement from the entire data set) and
repeating the estimation procedure over these different re-
samplings. As parameter dimensionality and data size grow,
the Bootstrap becomes increasingly –even prohibitively– ex-
pensive.

In this context, we follow a different path: we show that
inference can also be accomplished by directly using stochas-
tic gradient descent (SGD), both for point estimates and
inference, with a fixed step size over the data set. It is well-
established that fixed step-size SGD is by and large the dom-
inant method used for large scale data analysis. We prove,
and also demonstrate empirically, that the average of SGD
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sequences, obtained by minimizing RFs, can also be used for
statistical inference. Unlike the Bootstrap, our approach does
not require creating many large-size subsamples from the
data, neither re-running SGD from scratch for each of these
subsamples. Our method only uses first order information
from gradient computations, and does not require any sec-
ond order information. Both of these are important for large
scale problems, where re-sampling many times, or computing
Hessians, may be computationally prohibitive.

Outline and main contributions: This paper studies and
analyzes a simple, fixed step size1, SGD-based algorithm for
inference inM -estimation problems. Our algorithm produces
samples, whose covariance converges to the covariance of
the M -estimate, without relying on bootstrap-based schemes,
and also avoiding direct and costly computation of second
order information. Much work has been done on the asymp-
totic normality of SGD, as well as on the Stochastic Gradient
Langevin Dynamics (and variants) in the Bayesian setting.
As we discuss in detail in Section 4, this is the first work to
provide finite sample inference results, using fixed step size,
and without imposing overly restrictive assumptions on the
convergence of fixed step size SGD.

The remainder of the paper is organized as follows. In
the next section, we define the inference problem for M -
estimation, and recall basic results of asymptotic normality
and how these are used. Section 3 is the main body of the
paper: we provide the algorithm for creating bootstrap-like
samples, and also provide the main theorem of this work. As
the details are involved, we provide an intuitive analysis of
our algorithm and explanation of our main results, using an
asymptotic Ornstein-Uhlenbeck process approximation for
the SGD process (Kushner and Huang, 1981; Pflug, 1986;
Benveniste, Priouret, and Métivier, 1990; Kushner and Yin,
2003; Mandt, Hoffman, and Blei, 2016), and we postpone
the full proof until the appendix. We specialize our main
theorem to the case of linear regression (see supplementary
material), and also that of logistic regression. For logistic
regression in particular, we require a somewhat different

1Fixed step size means we use the same step size every iteration,
but the step size is smaller with more total number of iterations. In
contrast, constant step size means the step size is constant no matter
how many iterations taken.



approach, as the logistic regression objective is not strongly
convex. In Section 4, we present related work and elaborate
how this work differs from existing research in the literature.
Finally, in the experimental section, we provide parts of our
numerical experiments that illustrate the behavior of our
algorithm, and corroborate our theoretical findings. We do
this using synthetic data for linear and logistic regression, and
also by considering the Higgs detection (Baldi, Sadowski,
and Whiteson, 2014) and the LIBSVM Splice data sets. A
considerably expanded set of empirical results is deferred to
the appendix.

Supporting our theoretical results, our empirical findings
suggest that the SGD inference procedure produces results
similar to bootstrap while using far fewer operations. Thereby,
we produce a more efficient inference procedure applicable
in large scale settings, where other approaches fail.

2 Statistical inference for M -estimators
Consider the problem of estimating a set of parameters θ? ∈
Rp using n samples {Xi}ni=1, drawn from some distribution
P on the sample space X . In frequentist inference, we are
interested in estimating the minimizer θ? of the population
risk:

θ? = argmin
θ∈Rp

EP [f(θ;X)] = argmin
θ∈Rp

∫
x

f(θ;x) dP (x), (1)

where we assume that f(·;x) : Rp → R is real-valued and
convex; further, we will use E ≡ EP , unless otherwise stated.
In practice, the distribution P is unknown. We thus estimate
θ? by solving an empirical risk minimization (ERM) problem,
where we use the estimate θ̂:

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

f(θ;Xi). (2)

Statistical inference consists of techniques for obtaining
information beyond point estimates θ̂, such as confidence
intervals. These can be performed if there is an asymptotic
limiting distribution associated with θ̂ (Wasserman, 2013).
Indeed, under standard and well-understood regularity condi-
tions, the solution to M -estimation problems satisfies asymp-
totic normality. That is, the distribution

√
n(θ̂−θ?) converges

weakly to a normal distribution:

√
n(θ̂ − θ?) −→ N (0, H?−1G?H?−1), (3)

where

H? = E[∇2f(θ?;X)],

and

G? = E[∇f(θ?;X) · ∇f(θ?;X)>];

see also Theorem 5.21 in (van der Vaart, 2000). We can
therefore use this result, as long as we have a good estimate
of the covariance matrix: H?−1G?H?−1. The central goal of
this paper is obtaining accurate estimates for H?−1G?H?−1.
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Figure 1: Our SGD inference procedure

A naive way to estimate H?−1G?H?−1 is through the
empirical estimator Ĥ−1ĜĤ−1 where:

Ĥ =
1

n

n∑
i=1

∇2f(θ̂;Xi) and

Ĝ =
1

n

n∑
i=1

∇f(θ̂;Xi)∇f(θ̂;Xi)
>. (4)

Beyond calculating2 Ĥ and Ĝ, this computation requires an
inversion of Ĥ and matrix-matrix multiplications in order
to compute Ĥ−1ĜĤ−1—a key computational bottleneck in
high dimensions. Instead, our method uses SGD to directly
estimate Ĥ−1ĜĤ−1.

3 Statistical inference using SGD
Consider the optimization problem in (2). For instance, in
maximum likelihood estimation (MLE), f(θ;Xi) is a nega-
tive log-likelihood function. For simplicity of notation, we
use fi(θ) and f(θ) for f(θ;Xi) and 1

n

∑n
i=1 f(θ;Xi), re-

spectively, for the rest of the paper.
The SGD algorithm with a fixed step size η, is given by

the iteration

θt+1 = θt − ηgs(θt), (5)

where gs(·) is an unbiased estimator of the gradient, i.e.,
E[gs(θ) | θ] = ∇f(θ), where the expectation is w.r.t. the
stochasticity in the gs(·) calculation. A classical example
of an unbiased estimator of the gradient is gs(·) ≡ ∇fi(·),
where i is a uniformly random index over the samples Xi.

Our inference procedure uses the average of t consecutive
SGD iterations. In particular, the algorithm proceeds as fol-
lows: Given a sequence of SGD iterates, we use the first SGD
iterates θ−b, θ−b+1, . . . , θ0 as a burn in period; we discard
these iterates. Next, for each “segment” of t+ d iterates, we

2In the case of maximum likelihood estimation, we have H? =
G?—which is called Fisher information. Thus, the covariance of
interest is H?−1 = G?−1. This can be estimated either using Ĥ or
Ĝ.



use the first t iterates to compute θ̄(i)
t = 1

t

∑t
j=1 θ

(i)
j and

discard the last d iterates, where i indicates the i-th segment.
This procedure is illustrated in Figure 1. As the final empiri-
cal minimum θ̂, we use in practice θ̂ ≈ 1

R

∑R
i=1 θ̄

(i)
t (Bubeck,

2015).
Some practical aspects of our scheme are discussed below.
Step size η selection and length t: Theorem 1 below is

consistent only for SGD with fixed step size that depends
on the number of samples taken. Our experiments, however,
demonstrate that choosing a constant (large) η gives equally
accurate results with significantly reduced running time. We
conjecture that a better understanding of t’s and η’s influence
requires stronger bounds for SGD with constant step size.
Heuristically, calibration methods for parameter tuning in
subsampling methods ((Politis, Romano, and Wolf, 2012),
Ch. 9) could be used for hyper-parameter tuning in our SGD
procedure. We leave the problem of finding maximal (prov-
able) learning rates for future work.

Discarded length d: Based on the analysis of mean estima-
tion in the appendix, if we discard d SGD iterates in every
segment, the correlation between consecutive θ(i) and θ(i+1)

is of the order of C1e
−C2ηd, where C1 and C2 are data de-

pendent constants. This can be used as a rule of thumb to
reduce correlation between samples from our SGD inference
procedure.

Burn-in period b: The purpose of the burn-in period b, is
to ensure that samples are generated when SGD iterates are
sufficiently close to the optimum. This can be determined
using heuristics for SGD convergence diagnostics. Another
approach is to use other methods (e.g., SVRG (Johnson and
Zhang, 2013)) to find the optimum, and use a relatively small
b for SGD to reach stationarity, similar to Markov Chain
Monte Carlo burn-in.

Statistical inference using θ̄(i)
t and θ̂: Similar to ensemble

learning (Opitz and Maclin, 1999), we use i = 1, 2, . . . , R
estimators for statistical inference:

θ(i) = θ̂ +

√
Ks · t
n

(
θ̄

(i)
t − θ̂

)
. (6)

Here, Ks is a scaling factor that depends on how the stochas-
tic gradient gs is computed. We show examples of Ks for
mini batch SGD in linear regression and logistic regression
in the corresponding sections. Similar to other resampling
methods such as bootstrap and subsampling, we use quantiles
or variance of θ(1), θ(2), . . . , θ(R) for statistical inference.

3.1 Theoretical guarantees
Next, we provide the main theorem of our paper. Essentially,
this provides conditions under which our algorithm is guar-
anteed to succeed, and hence has inference capabilities.
Theorem 1. For a differentiable convex function f(θ) =
1
n

∑n
i=1 fi(θ), with gradient ∇f(θ), let θ̂ ∈ Rp be its min-

imizer, according to (2), and denote its Hessian at θ̂ by
H := ∇2f(θ̂) = 1

n ·
∑n
i=1∇2fi(θ̂). Assume that ∀θ ∈ Rp,

f satisfies:

(F1) Weak strong convexity: (θ− θ̂)>∇f(θ) ≥ α‖θ− θ̂‖22,
for constant α > 0,

(F2) Lipschitz gradient continuity: ‖∇f(θ)‖2 ≤ L‖θ −
θ̂‖2, for constant L > 0,

(F3) Bounded Taylor remainder: ‖∇f(θ)−H(θ− θ̂)‖2 ≤
E‖θ − θ̂‖22, for constant E > 0,

(F4) Bounded Hessian spectrum at θ̂: 0 < λL ≤ λi(H) ≤
λU <∞, ∀i.

Furthermore, let gs(θ) be a stochastic gradient of f , satisfy-
ing:
(G1) E [gs(θ) | θ] = ∇f(θ),

(G2) E
[
‖gs(θ)‖22 | θ

]
≤ A‖θ − θ̂‖22 +B,

(G3) E
[
‖gs(θ)‖42 | θ

]
≤ C‖θ − θ̂‖42 +D,

(G4)
∥∥E [gs(θ)gs(θ)> | θ]−G∥∥2

≤ A1‖θ − θ̂‖2 +

A2‖θ − θ̂‖22 +A3‖θ − θ̂‖32 +A4‖θ − θ̂‖42,

where G = E[gs(θ̂)gs(θ̂)
> | θ̂] and, for positive, data depen-

dent constants A,B,C,D,Ai, for i = 1, . . . , 4.
Assume that ‖θ1 − θ̂‖22 = O(η); then for sufficiently small

step size η > 0, the average SGD sequence, θ̄t, satisfies:∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2

.
√
η +

√
1
tη + tη2. (7)

We provide the full proof in the appendix, and also we give
precise (data-dependent) formulas for the above constants.
For ease of exposition, we leave them as constants in the
expressions above. Further, in the next section, we relate a
continuous approximation of SGD to Ornstein-Uhlenbeck
process (Robbins and Monro, 1951) to give an intuitive ex-
planation of our results.

Discussion. For linear regression, assumptions (F1), (F2),
(F3), and (F4) are satisfied when the empirical risk function
is not degenerate. In mini batch SGD using sampling with
replacement, assumptions (G1), (G2), (G3), and (G4) are
satisfied. Linear regression’s result is presented in Corollary
2 in the appendix.

For logistic regression, assumption (F1) is not satisfied
because the empirical risk function in this case is strictly
but not strongly convex. Thus, we cannot apply Theorem 1
directly. Instead, we consider the use of SGD on the square
of the empirical risk function plus a constant; see eq. (11)
below. When the empirical risk function is not degenerate,
(11) satisfies assumptions (F1), (F2), (F3), and (F4). We
cannot directly use vanilla SGD to minimize (11), instead
we describe a modified SGD procedure for minimizing (11)
in Section 3.3, which satisfies assumptions (G1), (G2), (G3),
and (G4). We believe that this result is of interest by its own.
We present the result specialized for logistic regression in
Corollary 1.

Note that Theorem 1 proves consistency for SGD with
fixed step size, requiring η → 0 when t → ∞. However,
we empirically observe in our experiments that a sufficiently
large constant η gives better results. We conjecture that the
average of consecutive iterates in SGD with larger constant
step size converges to the optimum and we consider it for
future work.



3.2 Intuitive interpretation via the
Ornstein-Uhlenbeck process approximation

Here, we describe a continuous approximation of the discrete
SGD process and relate it to the Ornstein-Uhlenbeck process
(Robbins and Monro, 1951), to give an intuitive explanation
of our results. In particular, under regularity conditions, the
stochastic process ∆t = θt − θ̂ asymptotically converges to
an Ornstein-Uhlenbeck process ∆(t), (Kushner and Huang,
1981; Pflug, 1986; Benveniste, Priouret, and Métivier, 1990;
Kushner and Yin, 2003; Mandt, Hoffman, and Blei, 2016)
that satisfies:

d∆(T ) = −H∆(T ) dT +
√
ηG

1
2 dB(T ), (8)

where B(T ) is a standard Brownian motion. Given (8),√
t(θ̄t − θ̂) can be approximated as

√
t(θ̄t − θ̂) = 1√

t

t∑
i=1

(θi − θ̂)

= 1
η
√
t

t∑
i=1

(θi − θ̂)η ≈ 1
η
√
t

∫ tη

0

∆(T ) dT,

(9)
where we use the approximation that η ≈ dT . By rear-

ranging terms in (8) and multiplying both sides by H−1,
we can rewrite the stochastic differential equation (8) as
∆(T ) dT = −H−1 d∆(T ) +

√
ηH−1G

1
2 dB(T ). Thus, we

have∫ tη

0

∆(T ) dT =

−H−1(∆(tη)−∆(0)) +
√
ηH−1G

1
2B(tη). (10)

After plugging (10) into (9) we have
√
t
(
θ̄t − θ̂

)
≈

− 1
η
√
t
H−1 (∆(tη)−∆(0)) + 1√

tη
H−1G

1
2B(tη).

When ∆(0) = 0, the variance Var
[
− 1/η

√
t ·H−1(∆(tη)−

∆(0))
]

= O (1/tη). Since 1/
√
tη · H−1G

1
2B(tη) ∼

N (0, H−1GH−1), when η → 0 and ηt→∞, we conclude
that

√
t(θ̄t − θ̂) ∼ N (0, H−1GH−1).

3.3 Logistic regression
We next apply our method to logistic regression. We have
n samples (X1, y1), (X2, y2), . . . (Xn, yn) where Xi ∈ Rp
consists of features and yi ∈ {+1,−1} is the label. We
estimate θ of a linear classifier sign(θTX) by:

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

log
(
1 + exp(−yiθ>Xi)

)
.

We cannot apply Theorem 1 directly because the empir-
ical logistic risk is not strongly convex; it does not satisfy

assumption (F1). Instead, we consider the convex function

f(θ) =
1

2

(
c+

1

n

n∑
i=1

log
(

1 + exp(−yiθ>Xi)
))2

,

where c > 0 (e.g., c = 1). (11)

The gradient of f(θ) is a product of two terms

∇f(θ) =

(
c+

1

n

n∑
i=1

log
(

1 + exp(−yiθ>Xi)
))

︸ ︷︷ ︸
Ψ

×

∇

(
1

n

n∑
i=1

log
(

1 + exp(−yiθ>Xi)
))

︸ ︷︷ ︸
Υ

.

Therefore, we can compute gs = ΨsΥs, using two inde-
pendent random variables satisfying E[Ψs | θ] = Ψ and
E[Υs | θ] = Υ. For Υs, we have Υs = 1

SΥ

∑
i∈IΥ

t
∇ log(1+

exp(−yiθ>Xi)), where IΥ
t are SΥ indices sampled from

[n] uniformly at random with replacement. For Ψs, we have
Ψs = c+ 1

SΨ

∑
i∈IΨ

t
log(1+exp(−yiθ>Xi)), where IΨ

t are
SΨ indices uniformly sampled from [n] with or without re-
placement. Given the above, we have ∇f(θ)>(θ − θ̂) ≥
α‖θ − θ̂‖22 for some constant α by the generalized self-
concordance of logistic regression (Bach, 2010, 2014), and
therefore the assumptions are now satisfied.

For convenience, we write k(θ) = 1
n

∑n
i=1 ki(θ) where

ki(θ) = log(1 + exp(−yiθ>Xi)). Thus f(θ) = (k(θ) + c)2,
E[Ψs | θ] = k(θ) + c, and E[Υs | θ] = ∇k(θ).

Corollary 1. Assume ‖θ1 − θ̂‖22 = O(η); also SΨ = O(1),
SΥ = O(1) are bounded. Then, we have∥∥∥tE [(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1

∥∥∥
2
.
√
η +

√
1
tη

+ tη2,

where H = ∇2f(θ̂) = (c + k(θ̂))∇2k(θ̂). Here, G =
1
SΥ
KG(θ̂) 1

n

∑n
i=1∇ki(θ̂)ki(θ̂)> with KG(θ) = E[Ψ(θ)2]

depending on how indexes are sampled to compute Ψs:
• with replacement: KG(θ) = 1

SΨ
( 1
n

∑n
i=1(c + ki(θ))

2) +
SΨ−1
SΨ

(c+ k(θ))2 ,

• no replacement: KG(θ) =
1−SΨ−1

n−1

SΨ
( 1
n

∑n
i=1(c + ki(θ))

2) +
SΨ−1
SΨ

n
n−1

(c+ k(θ))2.

Quantities other than t and η are data dependent constants.
As with the results above, in the appendix we give data-

dependent expressions for the constants. Simulations suggest
that the term tη2 in our bound is an artifact of our analysis.
Because in logistic regression the estimate’s covariance is
(∇2k(θ̂))

−1

n

(∑n
i=1∇ki(θ̂)∇ki(θ̂)

>

n

)(
∇2k(θ̂)

)−1

, we set the

scaling factor Ks = (c+k(θ̂))2

KG(θ̂)
in (6) for statistical inference.

Note that Ks ≈ 1 for sufficiently large SΨ.

4 Related work
Bayesian inference: First and second order iterative opti-
mization algorithms –including SGD, gradient descent, and



variants– naturally define a Markov chain. Based on this
principle, most related to this work is the case of stochastic
gradient Langevin dynamics (SGLD) for Bayesian inference –
namely, for sampling from the posterior distributions – using
a variant of SGD (Welling and Teh, 2011; Bubeck, Eldan,
and Lehec, 2015; Mandt, Hoffman, and Blei, 2016, 2017).
We note that, here as well, the vast majority of the results
rely on using a decreasing step size. Very recently, (Mandt,
Hoffman, and Blei, 2017) uses a heuristic approximation for
Bayesian inference, and provides results for fixed step size.

Our problem is different in important ways from the
Bayesian inference problem. In such parameter estimation
problems, the covariance of the estimator only depends on
the gradient of the likelihood function. This is not the case,
however, in general frequentist M -estimation problems (e.g.,
linear regression). In these cases, the covariance of the es-
timator depends both on the gradient and Hessian of the
empirical risk function. For this reason, without second order
information, SGLD methods are poorly suited for general M -
estimation problems in frequentist inference. In contrast, our
method exploits properties of averaged SGD, and computes
the estimator’s covariance without second order information.

Connection with Bootstrap methods: The classical ap-
proach for statistical inference is to use the bootstrap (Efron
and Tibshirani, 1994; Shao and Tu, 2012). Bootstrap samples
are generated by replicating the entire data set by resampling,
and then solving the optimization problem on each generated
set of the data. We identify our algorithm and its analysis as
an alternative to bootstrap methods. Our analysis is also spe-
cific to SGD, and thus sheds light on the statistical properties
of this very widely used algorithm.

Connection with stochastic approximation methods: It has
been long observed in stochastic approximation that under
certain conditions, SGD displays asymptotic normality for
both the setting of decreasing step size, e.g., (Ljung, Pflug,
and Walk, 2012; Polyak and Juditsky, 1992), and more re-
cently, (Toulis and Airoldi, 2014; Chen et al., 2016); and also
for fixed step size, e.g., (Benveniste, Priouret, and Métivier,
1990), Chapter 4. All of these results, however, provide their
guarantees with the requirement that the stochastic approx-
imation iterate converges to the optimum. For decreasing
step size, this is not an overly burdensome assumption, since
with mild assumptions it can be shown directly. As far as we
know, however, it is not clear if this holds in the fixed step
size regime. To side-step this issue, (Benveniste, Priouret,
and Métivier, 1990) provides results only when the (constant)
step-size approaches 0 (see Section 4.4 and 4.6, and in partic-
ular Theorem 7 in (Benveniste, Priouret, and Métivier, 1990)).
Similarly, while (Kushner and Yin, 2003) has asymptotic re-
sults on the average of consecutive stochastic approximation
iterates with constant step size, it assumes convergence of
iterates (assumption A1.7 in Ch. 10) – an assumption we are
unable to justify in even simple settings.

Beyond the critical difference in the assumptions, the ma-
jority of the “classical” subject matter seeks to prove asymp-
totic results about different flavors of SGD, but does not
properly consider its use for inference. Key exceptions are
the recent work in (Toulis and Airoldi, 2014) and (Chen et al.,
2016), which follow up on (Polyak and Juditsky, 1992). Both

of these rely on decreasing step size, for reasons mentioned
above. The work in (Chen et al., 2016) uses SGD with de-
creasing step size for estimating an M -estimate’s covariance.
Work in (Toulis and Airoldi, 2014) studies implicit SGD with
decreasing step size and proves results similar to (Polyak and
Juditsky, 1992), however it does not use SGD to compute
confidence intervals.

Overall, to the best of our knowledge, there are no prior
results establishing asymptotic normality for SGD with fixed
step size for general M-estimation problems (that do not rely
on overly restrictive assumptions, as discussed).

5 Experiments
5.1 Synthetic data
The coverage probability is defined as 1

p

∑p
i=1 P[θ?i ∈ Ĉi]

where θ? = argminθ E[f(θ,X)] ∈ Rp, and Ĉi is the esti-
mated confidence interval for the ith coordinate. The average
confidence interval width is defined as 1

p

∑p
i=1(Ĉui − Ĉli)

where [Ĉli , Ĉ
u
i ] is the estimated confidence interval for the

ith coordinate. In our experiments, coverage probability and
average confidence interval width are estimated through sim-
ulation. We use the empirical quantile of our SGD inference
procedure and bootstrap to compute the 95% confidence in-
tervals for each coordinate of the parameter. For results given
as a pair (α, β), it usually indicates (coverage probability,
confidence interval length).

Univariate models In Figure 2, we compare our SGD in-
ference procedure with (i) Bootstrap and (ii) normal approx-
imation with inverse Fisher information in univariate models.
We observe that our method and Bootstrap have similar sta-
tistical properties. Figure 5 in the appendix shows Q-Q plots
of samples from our SGD inference procedure.

Normal distribution mean estimation: Figure 2a compares
500 samples from SGD inference procedure and Bootstrap
versus the distribution N (0, 1/n), using n = 20 i.i.d. sam-
ples from N (0, 1). We used mini batch SGD described in
Sec. A. For the parameters, we used η = 0.8, t = 5, d = 10,
b = 20, and mini batch size of 2. Our SGD inference proce-
dure gives (0.916 , 0.806), Bootstrap gives (0.926 , 0.841),
and normal approximation gives (0.922 , 0.851).

Exponential distribution parameter estimation: Figure 2b
compares 500 samples from inference procedure and Boot-
strap, using n = 100 samples from an exponential distri-
bution with PDF λe−λx where λ = 1. We used SGD for
MLE with mini batch sampled with replacement. For the
parameters, we used η = 0.1, t = 100, d = 5, b = 100,
and mini batch size of 5. Our SGD inference procedure gives
(0.922, 0.364), Bootstrap gives (0.942 , 0.392), and normal
approximation gives (0.922, 0.393).

Poisson distribution parameter estimation: Figure 2c com-
pares 500 samples from inference procedure and Bootstrap,
using n = 100 samples from a Poisson distribution with
PDF λxe−λx where λ = 1. We used SGD for MLE with
mini batch sampled with replacement. For the parameters,
we used η = 0.1, t = 100, d = 5, b = 100, and mini batch
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Figure 2: Estimation in univariate models.

η t = 100 t = 500 t = 2500

0.1 (0.957, 4.41) (0.955, 4.51) (0.960, 4.53)
0.02 (0.869, 3.30) (0.923, 3.77) (0.918, 3.87)
0.004 (0.634, 2.01) (0.862, 3.20) (0.916, 3.70)

(a) Bootstrap (0.941, 4.14), normal approximation (0.928, 3.87)

η t = 100 t = 500 t = 2500

0.1 (0.949, 4.74) (0.962, 4.91) (0.963, 4.94)
0.02 (0.845, 3.37) (0.916, 4.01) (0.927, 4.17)
0.004 (0.616, 2.00) (0.832, 3.30) (0.897, 3.93)

(b) Bootstrap (0.938, 4.47), normal approximation (0.925, 4.18)

Table 1: Linear regression. Left: Experiment 1, Right: Experiment 2.

η t = 100 t = 500 t = 2500

0.1 (0.872, 0.204) (0.937, 0.249) (0.939, 0.258)
0.02 (0.610, 0.112) (0.871, 0.196) (0.926, 0.237)
0.004 (0.312, 0.051) (0.596, 0.111) (0.86, 0.194)

(a) Bootstrap (0.932, 0.253), normal approximation (0.957, 0.264)

η t = 100 t = 500 t = 2500

0.1 (0.859, 0.206) (0.931, 0.255) (0.947, 0.266)
0.02 (0.600, 0.112) (0.847, 0.197) (0.931, 0.244)
0.004 (0.302, 0.051) (0.583, 0.111) (0.851, 0.195)

(b) Bootstrap (0.932, 0.245), normal approximation (0.954, 0.256)

Table 2: Logistic regression. Left: Experiment 1, Right: Experiment 2.

size of 5. Our SGD inference procedure gives (0.942 , 0.364),
Bootstrap gives (0.946 , 0.386), and normal approximation
gives (0.960 , 0.393).

Multivariate models In these experiments, we set d =
100, used mini-batch size of 4, and used 200 SGD samples.
In all cases, we compared with Bootstrap using 200 repli-
cates. We computed the coverage probabilities using 500
simulations. Also, we denote 1p = [1 1 . . . 1]

> ∈ Rp.
Additional simulations comparing covariance matrix com-
puted with different methods are given in Sec. D.1.

Linear regression: Experiment 1: Results for the case
where X ∼ N (0, I) ∈ R10, Y = w∗TX + ε, w∗ = 1p/

√
p,

and ε ∼ N (0, σ2 = 102) with n = 100 samples is given
in Table 1a. Bootstrap gives (0.941, 4.14), and confidence
intervals computed using the error covariance and normal
approximation gives (0.928, 3.87). Experiment 2: Results
for the case where X ∼ N (0,Σ) ∈ R10, Σij = 0.3|i−j|,
Y = w∗TX + ε, w∗ = 1p/

√
p, and ε ∼ N (0, σ2 = 102)

with n = 100 samples is given in Table 1b. Bootstrap gives
(0.938, 4.47), and confidence intervals computed using the
error covariance and normal approximation gives (0.925,
4.18).

Logistic regression: Here we show results for logistic
regression trained using vanilla SGD with mini batch sam-
pled with replacement. Results for modified SGD (Sec. 3.3)
are given in Sec. D.1. Experiment 1: Results for the case
where P[Y = +1] = P[Y = −1] = 1/2, X | Y ∼
N (0.01Y 1p/

√
p, I) ∈ R10 with n = 1000 samples is given

in Table 2a. Bootstrap gives (0.932, 0.245), and confidence
intervals computed using inverse Fisher matrix as the error
covariance and normal approximation gives (0.954, 0.256).
Experiment 2: Results for the case where P[Y = +1] =
P[Y = −1] = 1/2, X | Y ∼ N (0.01Y 1p/

√
p,Σ) ∈ R10,

Σij = 0.2|i−j| with n = 1000 samples is given in Table 2b.
Bootstrap gives (0.932, 0.253), and confidence intervals com-
puted using inverse Fisher matrix as the error covariance and
normal approximation gives (0.957, 0.264).

5.2 Real data

Here, we compare covariance matrices computed using our
SGD inference procedure, bootstrap, and inverse Fisher in-
formation matrix on the LIBSVM Splice data set, and we
observe that they have similar statistical properties.



Splice data set The Splice data set 3 contains 60 distinct
features with 1000 data samples. This is a classification prob-
lem between two classes of splice junctions in a DNA se-
quence. We use a logistic regression model trained using
vanilla SGD.

In Figure 3, we compare the covariance matrix computed
using our SGD inference procedure and bootstrap n = 1000
samples. We used 10000 samples from both bootstrap and our
SGD inference procedure with t = 500, d = 100, η = 0.2,
and mini batch size of 6.
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Figure 3: Splice data set
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(a) Original “0”: logit -46.3,
CI (-64.2, -27.9)
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(b) Adversarial “0”: logit 16.5,
CI (-10.9, 30.5)

Figure 4: MNIST

MNIST Here, we train a binary logistic regression classi-
fier to classify 0/1 using a noisy MNIST data set, and demon-
strate that adversarial examples produced by gradient attack
(Goodfellow, Shlens, and Szegedy, 2015) (perturbing an im-
age in the direction of loss function’s gradient with respect
to data) can be detected using prediction intervals. We flatten
each 28× 28 image into a 784 dimensional vector, and train
a linear classifier using pixel values as features. To add noise
to each image, where each original pixel is either 0 or 1, we
randomly changed 70% pixels to random numbers uniformly
on [0, 0.9]. Next we train the classifier on the noisy MNIST
data set, and generate adversarial examples using this noisy
MNIST data set. Figure 4 shows each image’s logit value
(log P[1|image]

P[0|image] ) and its 95% confidence interval (CI) computed
using quantiles from our SGD inference procedure.

3https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/binary.html

5.3 Discussion
In our experiments, we observed that using a larger step size
η produces accurate results with significantly accelerated
convergence time. This might imply that the η term in Theo-
rem 1’s bound is an artifact of our analysis. Indeed, although
Theorem 1 only applies to SGD with fixed step size, where
ηt → ∞ and η2t → 0 imply that the step size should be
smaller when the number of consecutive iterates used for
the average is larger, our experiments suggest that we can
use a (data dependent) constant step size η and only require
ηt→∞.

In the experiments, our SGD inference procedure uses
(t + d) · S · p operations to produce a sample, and Newton
method uses n · (matrix inversion complexity = Ω(p2)) ·
(number of Newton iterations t) operations to produce a sam-
ple. The experiments therefore suggest that our SGD infer-
ence procedure produces results similar to Bootstrap while
using far fewer operations.
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A Exact analysis of mean estimation
In this section, we give an exact analysis of our method in the least squares, mean estimation problem. For n i.i.d. samples
X1, X2, . . . , Xn, the mean is estimated by solving the following optimization problem

θ̂ = argmax
θ∈Rp

1

n

n∑
i=1

1
2‖Xi − θ‖22 =

1

n

n∑
i=1

Xi.

In the case of mini-batch SGD, we sample S = O(1) indexes uniformly randomly with replacement from [n]; denote that index
set as It. For convenience, we write Yt = 1

S

∑
i∈It Xi, Then, in the tth mini batch SGD step, the update step is

θt+1 = θt − η(θt − Yt) = (1− η)θt + ηYt, (12)

which is the same as the exponential moving average. And we have

√
tθ̂t = − 1

η
√
t
(θt+1 − θ1) +

1√
t

n∑
i=1

Yi. (13)

Assume that ‖θ1 − θ̂‖22 = O(η), then from Chebyshev’s inequality − 1
η
√
t
(θt+1 − θ1)→ 0 almost surely when tη →∞. By the

central limit theorem, 1√
t

∑n
i=1 Yi converges weakly to N (θ̂, 1

S Σ̂) with Σ̂ = 1
n

∑n
i=1(Xi − θ̂)(Xi − θ̂)>. From (12), we have

‖Cov(θa, θb)‖2 = O(η(1− η)|a−b|) uniformly for all a, b, where the constant is data dependent. Thus, for our SGD inference
procedure, we have ‖Cov(θ(i), θ(j))‖2 = O(η(1−η)d+t|i−j|). Our SGD inference procedure does not generate samples that are
independent conditioned on the data, whereas replicates are independent conditioned on the data in bootstrap, but this suggests
that our SGD inference procedure can produce “almost independent” samples if we discard sufficient number of SGD iterates in
each segment.

When estimating a mean using our SGD inference procedure where each mini batch is S elements sampled with replacement,
we set Ks = S in (6).

B Linear Regression
In linear regression, the empirical risk function satisfies:

f(θ) =
1

n

n∑
i=1

1
2 (θ>xi − yi)2,

where yi denotes the observations of the linear model and xi are the regressors. To find an estimate to θ?, one can use SGD with
stochastic gradient give by:

gs[θt] =
1

S

∑
i∈It

∇fi(θt),

where It are S indices uniformly sampled from [n] with replacement.
Next, we state a special case of Theorem 1. Because the Taylor remainder ∇f(θ)−H(θ − θ̂) = 0, linear regression has a

stronger result than general M -estimation problems.

Corollary 2. Assume that ‖θ1 − θ̂‖22 = O(η), we have∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2
.
√
η +

1√
tη
,

where H = 1
n

∑n
i=1 xix

>
i and G = 1

S
1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i .

We assume that S = O(1) is bounded, and quantities other than t and η are data dependent constants.

As with our main theorem, in the appendix we provide explicit data-dependent expressions for the constants in the result.
Because in linear regression the estimate’s covariance is 1

n ( 1
n

∑n
i=1 xix

>
i )−1)( 1

n (x>i θ̂ − yi)(x>i θ̂ − yi)>)( 1
n

∑n
i=1 xix

>
i )−1),

we set the scaling factor Ks = S in (6) for statistical inference.



C Proofs
C.1 Proof of Theorem 1
We first assume that θ1 = θ̂. For ease of notation, we denote

∆t = θt − θ̂, (14)

and, without loss of generality, we assume that θ̂ = 0. The stochastic gradient descent recursion satisfies:

θt+1 = θt − η · gs(θt)
= θt − η · (gs(θt)−∇f(θt) +∇f(θt))

= θt − η · ∇f(θt)− η · et,
where et = gs(θt)−∇f(θt). Note that e1, e2, . . . is a martingale difference sequence. We use

gi = ∇fi(θ̂) and, Hi = ∇2fi(θ̂) (15)

to denote the gradient component at index i, and the Hessian component at index i, at optimum θ̂, respectively. Note that∑
gi = 0 and 1

n

∑
Hi = H .

For each fi, its Taylor expansion around θ̂ is

fi(θ) = fi(θ̂) + g>i (θ − θ̂) +
1

2
(θ − θ̂)>Hi(θ − θ̂) +Ri(θ, θ̂), (16)

where Ri(θ, θ̂) is the remainder term. For convenience, we write R = 1
n

∑
Ri.

For the proof, we require the following lemmata. The following lemma states that E[‖∆t‖22] = O(η) as t→∞ and η → 0.

Lemma 1. For data dependent, positive constants α,A,B according to assumptions (F1) and (G2) in Theorem 1, and given
assumption (G1), we have

E
[
‖∆t‖22

]
≤ (1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη , (17)

under the assumption η < 2α
A .

Proof. As already stated, we assume without loss of generality that θ̂ = 0. This further implies that: gs(θt) = gs(θt − θ̂) =
gs(∆t), and

∆t+1 = ∆t − η · gs(∆t).

Given the above and assuming expectation E[·] w.r.t. the selection of a sample from {Xi}ni=1, we have:

E
[
‖∆t+1‖22 | ∆t

]
= E

[
‖∆t − ηgs(∆t)‖22 | ∆t

]
= E

[
‖∆t‖22 | ∆t

]
+ η2 · E

[
‖gs(∆t)‖22 | ∆t

]
− 2η · E

[
gs(∆t)

>∆t | ∆t

]
= ‖∆t‖22 + η2 · E

[
‖gs(∆t)‖22 | ∆t

]
− 2η · ∇f(∆t)

>∆t

(i)

≤ ‖∆t‖22 + η2 ·
(
A · ‖∆t‖22 +B

)
− 2η · α‖∆t‖22

= (1− 2αη +Aη2)‖∆t‖22 + η2B. (18)

where (i) is due to assumptions (F1) and (G2) of Theorem 1. Taking expectations for every step t = 1, . . . over the whole
history, we obtain the recursion:

E
[
‖∆t+1‖22

]
≤ (1− 2αη +Aη2)t−1‖∆1‖22 + η2B ·

t−1∑
i=0

(1− 2αη +Aη2)i

= (1− 2αη +Aη2)t−1‖∆1‖22 + η2B · 1−(1−2αη+Aη2)t

2αη−Aη2

≤ (1− 2αη +Aη2)t−1‖∆1‖22 + ηB
2α−Aη .

The following lemma states that E
[
‖∆t‖42

]
= O(η2) as t→∞ and η → 0.



Lemma 2. For data dependent, positive constants α,A,B,C,D according to assumptions (F1), (G1), (G2) in Theorem 1, we
have:

E[‖∆t‖42] ≤(1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖42

+
B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)−B(3 + η)− C(2η2 + η3)
. (19)

Proof. Given ∆t, we have the following sets of (in)equalities:

E
[
‖∆t+1‖42 | ∆t

]
=E

[
‖∆t − ηgs(∆t)‖42 | ∆t

]
=E

[
(‖∆t‖22 − 2η · gs(∆t)

>∆t + η2‖gs(∆t)‖22)2 | ∆t

]
=E
[
‖∆t‖42 + 4η2(gs(∆t)

>∆t)
2 + η4‖gs(∆t)‖42 − 4η · gs(∆t)

>∆t‖∆t‖22
+ 2η2 · ‖gs(∆t)‖22‖∆t‖22 − 4η3 · gs(∆t)

>∆t‖gs(∆t)‖22 | ∆t

]
(i)

≤E
[
‖∆t‖42 + 4η2 · ‖gs(∆t)‖22 · ‖∆t‖22 + η4‖gs(∆t)‖42 − 4η · gs(∆t)

>∆t‖∆t‖22
+ 2η2 · ‖gs(∆t)‖22 · ‖∆t‖22 + 2η3 · (‖gs(∆t)‖22 + ‖∆t‖22) · ‖gs(∆t)‖22 | ∆t

]
(ii)

≤ E
[
‖∆t‖42 + (2η3 + η4)‖gs(∆t)‖42 + (6η2 + 2η3)‖gs(∆t)‖22‖∆t‖22 | ∆t

]
− 4αη‖∆t‖42

(iii)

≤ (1− 4αη)‖∆t‖42 + (6η2 + 2η3)(A‖∆t‖22 +B)‖∆t‖22 + (2η3 + η4)(C‖∆t‖42 +D)

=(1− 4αη +A(6η2 + 2η3) + C(2η3 + η4))‖∆t‖42 +B(6η2 + 2η3)‖∆t‖22 +D(2η3 + η4)

(iv)

≤ (1− 4αη +A(6η2 + 2η3) + C(2η3 + η4)) · ‖∆t‖42 +B(3η + η2)(η2 + ‖∆t‖42) +D(2η3 + η4)

=(1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4)) · ‖∆t‖42 +Bη2(3η + η2) +D(2η3 + η4), (20)

where (i) is due to (gs(∆t)
>∆t)

2 ≤ ‖gs(∆t)‖22 · ‖∆t‖22 and −2gs(∆t)
>∆t ≤ ‖gs(∆t)‖22 + ‖∆t‖22, (ii) is due to assumptions

(G1) and (F1) in Theorem 1, (iii) is due to assumptions (G2) and (G3) in Theorem 1, and (iv) is due to 2η‖∆t‖22 ≤ η2 +‖∆t‖42.
Similar to the proof of the previous lemma, applying the above rule recursively and w.r.t. the whole history of estimates, we
obtain:

E
[
‖∆t+1‖42

]
≤ (1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖42

+
(
Bη2(3η + η2) +D(2η3 + η4)

)
·
t−1∑
i=0

(
1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4)

)i
≤ (1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖42

+
Bη2(3η + η2) +D(2η3 + η4)

4αη −A(6η2 + 2η3)−B(3η + η2)− C(2η3 + η4)
,

which is the target inequality, after simple transformations.

We know that:

∆t = ∆t−1 − ηgs(∆t−1)

Using the Taylor expansion formula around the point ∆t−1 and using the assumption that θ̂ = 0, we have:

f(∆t−1) = f(θ̂) +∇f(θ̂)>∆t−1 +
1

2
∆>t−1H∆t−1 +R(∆t−1)

Taking further the gradient w.r.t. ∆t−1 in the above expression, we have:

∇f(∆t−1) = H∆t−1 +∇R(∆t−1)

Using the identity gs(∆t−1) = ∇f(∆t−1) + et−1, our SGD recursion can be re-written as:

∆t = (I − ηH) ∆t−1 − η (∇R(∆t−1) + et−1) = (I − ηH)
t−1

∆1 − η
t−1∑
i=1

(I − ηH)
t−1−i

(ei +∇R(∆i)) . (21)



For t ≥ 2 and since: θ̄ = θ̄ − θ̂ = ∆̄t = 1
t

∑t
i=1(θi − θ̂) = 1

t

∑t
i=1 ∆i, we get:

t(θ̄ − θ̂) =

t∑
i=1

∆i =

t∑
i=1

(I − ηH)
i−1

∆1 − η
t∑

j=1

j∑
i=1

(I − ηH)j−1−i(ei +∇R(∆i))

(i)
=
(
I − (I − ηH)t

)
H−1

η ∆1 − η
t∑

j=1

j∑
i=1

(I − ηH)j−1−i(ei +∇R(∆i)). (22)

where (i) holds due to the assumption that the eigenvalues of I − ηH satisfy |λi(I − ηH)| < 1, and thus, the geometric series
of matrices:

∑n−1
k=0 T

k = (I − T )−1(I − Tn), is utilized above. In our case, T = (I − ηH).
For the latter term in (22), using a variant of Abel’s sum formula, we have:

η

t∑
j=1

j∑
i=1

(I − ηH)j−1−i(ei +∇R(∆i)) = η

t−1∑
j=0

j∑
i=1

(I − ηH)j−i(ei +∇R(∆i)) (23)

= η

t−1∑
i=1

t−i−1∑
j=0

(I − ηH)j

 (ei +∇R(∆i))

=
t−1∑
i=1

(
I − (I − ηH)t−i

)
H−1(ei +∇R(∆i))

= H−1
t−1∑
i=1

ei +H−1
t−1∑
i=1

∇R(∆i)−H−1
t−1∑
i=1

(I − ηH)t−i(ei +∇R(∆i))

(i)
=H−1

t−1∑
i=1

ei +H−1
t−1∑
i=1

∇R(∆i) + H−1

η (I − ηH)(∆t − (I − ηH)t−1∆1), (24)

where (i) follows from the fact
∑t−1
i=1(I − ηH)t−i(ei +∇R(∆i)) = (I − ηH) 1

η (∆t − (I − ηH)t−1∆1), based on the expres-
sion (21).

The above combined lead to:

√
t∆̄t = 1√

t
(I − (I − ηH)t)H

−1

η ∆1︸ ︷︷ ︸
ϕ1

− 1√
t
H−1

t−1∑
i=1

ei︸ ︷︷ ︸
ϕ2

− 1√
t
H−1

t−1∑
i=1

∇R(∆i)︸ ︷︷ ︸
ϕ3

− 1√
t
H−1

η (I − ηH)(∆t − (I − ηH)t−1∆1)︸ ︷︷ ︸
ϕ4

.

(25)

For the main result of the theorem, we are interested in the following quantity:∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2
=
∥∥tE[∆̄t∆̄

>
t ]−H−1GH−1

∥∥
2

Using the ϕi notation, we have E[t∆̄t∆̄t] = E[(ϕ1 + ϕ2 + ϕ3 + ϕ4)(ϕ1 + ϕ2 + ϕ3 + ϕ4)>]. Thus, we need to bound:∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2
=
∥∥E[(ϕ1 + ϕ2 + ϕ3 + ϕ4)(ϕ1 + ϕ2 + ϕ3 + ϕ4)>]−H−1GH−1

∥∥
2

=
∥∥E[ϕ2ϕ

>
2 ]−H−1GH−1 + E[ϕ2(ϕ1 + ϕ4 + ϕ3)> + (ϕ1 + ϕ4 + ϕ3)ϕ>2 + (ϕ1 + ϕ4 + ϕ3)(ϕ1 + ϕ4 + ϕ3)>]

∥∥
2

≤
∥∥E [ϕ2ϕ

>
2

]
−H−1GH−1

∥∥
2

+
∥∥E[ϕ2(ϕ1 + ϕ4 + ϕ3)>]

∥∥
2

+
∥∥E[(ϕ1 + ϕ4 + ϕ3)ϕ>2 ]

∥∥
2

+
∥∥E[(ϕ1 + ϕ4 + ϕ3)(ϕ1 + ϕ4 + ϕ3)>]

∥∥
2

(i)

. ‖E[ϕ2ϕ
>
2 ]−H−1GH−1‖2 +

√
E[‖ϕ2‖22](E[‖ϕ1‖22] + E[‖ϕ4‖22] + E[‖ϕ3‖22]) + E[‖ϕ1‖22] + E[‖ϕ4‖22] + E[‖ϕ3‖22]

(26)

where (i) is due to the successive use of the AM-GM rule:

‖E[ab>]‖2 ≤
√

E[‖a‖22]E[‖b‖22] ≤ 1

2
E[‖a‖22] + E[‖b‖22]. (27)



for two p-dimensional random vectors a and b. Indeed, for any fixed unit vector u we have ‖E[ab>]u‖2 = ‖E[a(b>u)]‖2 ≤
E[‖a‖2|b>u|] ≤ E[‖a‖2‖b‖2] ≤

√
E[‖a‖22]E[‖b‖22]. We used the fact ‖E[x]‖2 ≤ E[‖x‖2] because ‖x‖2 is convex. Here also,

the . hides any constants appearing from applying successively the above rule.
Therefore, to proceed bounding the quantity of interest, we need to bound the terms E[‖ϕi‖22]. In the statement of the theorem

we have ∆1 = 0—however similar bounds will hold if ‖∆1‖22 = O(η); thus, for each of the above ϕi terms we have the
following.

ϕ1 := 1√
t
(I − (I − ηH)t)

H−1

η
∆1 = 0, (due to ∆1 = 0) (28)

E[‖ϕ4‖22] := E
[∥∥∥− 1√

t
H−1

η (I − ηH)(∆t − (I − ηH)t−1∆1)
∥∥∥2

2

]
≤ E

[
‖H−1‖22 · ‖I − ηH‖22 · 1

η2t‖∆t‖22
] (i)

≤ 1− ηλU
λL

· 1
η2t · E[‖∆t‖22]

(ii)

≤ 1− ηλU
λL

1

η2t

(
(1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη

)
=

1− ηλU
λL

B

tη(2α−Aη)

= O

(
1

tη

)
(29)

where (i) is due to Assumption (F4), (ii) is due to Lemma 1, and we used in several places the fact that ∆1 = 0.

E[‖ϕ3‖22] := E

∥∥∥∥∥− 1√
t
H−1

t−1∑
i=1

∇R(∆i)

∥∥∥∥∥
2

2

 ≤ E

 1
t · ‖H−1‖22 ·

∥∥∥∥∥
t−1∑
i=1

∇R(∆i)

∥∥∥∥∥
2

2

 (i)

≤ E

 1
λL

1
t

(
t−1∑
i=1

‖∇R(∆i)‖2
)2


(ii)

≤ E

 E2

λL·t

(
t−1∑
i=1

‖∆i‖22

)2
 (iii)

≤ E2

λL·t (t− 1) · E
[
t−1∑
i=1

‖∆i‖42

]

≤ E2

λL· (t− 1)

t−1∑
i=1

(
(1− 4αη +A(6η2 + 2η3) + C(2η3 + η4))t−1‖∆1‖42 +

B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)

)
(iv)
= E2

λL

(t−1)2

t

B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)

(v)
= O(tη2). (30)

where (i) is due to Assumption (F4) and due to |∑i χi|2 ≤
∑
i |χi|2, (ii) is due to Assumption (F3) on bounded remainder,

(iii) is due to the inequality
(∑n

i=1 χ
2
i

)2 ≤ n ·∑n
i=1 χ

2
i , (iv) is due to ∆1 = 0, (v) is due to η being an small constant compared

to α and thus B(3η2+η3)+D(2η2+η3)
4α−A(6η+2η2)−C(2η2+η3) = O(η2)

O(1) .

E[‖ϕ2‖22] := E

∥∥∥∥∥− 1√
t
H−1

t−1∑
i=1

ei

∥∥∥∥∥
2

2

 (i)
=

1

t

t−1∑
i=1

E[‖H−1ei‖22]
(ii)

≤ λU

t

t−1∑
i=1

E[‖ei‖22]

= λU

t

t−1∑
i=1

E[‖gs(∆i)−∇f(∆i)‖22] ≤ 2λU

t

(
t−1∑
i=1

E[‖gs(∆i)‖22] +

t−1∑
i=1

E[‖∇f(∆i)‖22]

)
(iii)

≤ 2λU

t

(
(t− 1)B + (A+ L2)

t−1∑
i=1

E[‖∆i‖22]

)
(iv)

≤ 2λU

t

(
(t− 1)B + (A+ L2)

t−1∑
i=1

(
(1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη

))

= 2λU (t−1)
t

(
B + (A+ L2)

Bη

2α−Aη

)
= O(1), (31)



where (i) is due to E[(H−1ei)
>H−1ej ] = 0 for i 6= j, (ii) is due to Assumption (F4), (iii) is due to Assumptions (F2) and

(G2), (iv) is due to Lemma 1.
Finaly, for the term E[ϕ2ϕ

>
2 ], we have

E[ϕ2ϕ
>
2 ] = E

(− 1√
t
H−1

t−1∑
i=1

ei

)(
− 1√

t
H−1

t−1∑
i=1

ei

)> = 1
tH
−1

(
t−1∑
i=1

E[eie
>
i ]

)
H−1. (32)

and thus: ∥∥E[ϕ2ϕ
>
2 ]−H−1GH−1

∥∥
2

=

∥∥∥∥∥ 1
tH
−1

(
t−1∑
i=1

E[eie
>
i ]

)
H−1 −H−1GH−1

∥∥∥∥∥
2

=

∥∥∥∥∥ 1
tH
−1

(
t−1∑
i=1

E[eie
>
i ]−G+G

)
H−1 −H−1GH−1

∥∥∥∥∥
2

=

∥∥∥∥∥ 1
tH
−1

(
t−1∑
i=1

E[eie
>
i ]−G

)
H−1 − t−1

t ·H−1GH−1

∥∥∥∥∥
2

≤ 1
tH
−1

(
t−1∑
i=1

∥∥E[eie
>
i ]−G

∥∥
2

)
H−1 + t−1

t

∥∥H−1GH−1
∥∥

2

For each term
∥∥E[eie

>
i ]−G

∥∥
2
,∀i, we have

‖E[eie
>
i ]−G‖2 =

∥∥∥E[gs(∆i)gs(∆i)
>]− E[∇f(∆i)∇f(∆i)

>]−G
∥∥∥

2

=
∥∥∥E[(gs(∆i)−∇f(∆i))(gs(∆i)−∇f(∆i))

>]−G
∥∥∥

2

=
∥∥∥E[gs(∆i)gs(∆i)

>]− E[gs(∆i)∇f(∆i)
>]− E[∇f(∆i)gs(∆i)

>] + E[∇f(∆i)∇f(∆i)
>]−G

∥∥∥
2

(i)
=
∥∥∥E[gs(∆i)gs(∆i)

>]− 2E[∇f(∆i)∇f(∆i)
>] + E[∇f(∆i)∇f(∆i)

>]−G
∥∥∥

2

(ii)

≤ E[‖∇f(∆i)‖22] + E
[
A1‖∆i‖2 +A2‖∆i‖22 +A3‖∆i‖32 +A4‖∆i‖42

]
(iii)

≤ L2E
[
‖∆i‖22

]
+A1

√
E [‖∆i‖22] +A2E

[
‖∆i‖22

]
+
A3

2
E
[
‖∆i‖22 + ‖∆i‖42

]
+A4E

[
‖∆i‖42

]
= A1

√
E[‖∆i‖22] +

(
L2 +A2 + A3

2

)
E[‖∆i‖22] +

(
A3
2

+A4

)
E[‖∆i‖42]

(iv)

≤ A1

√
(1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη +

(
L2 +A2 +

A3

2

)(
(1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη

)
+

(
A3

2
+A4

)(
(1− 4αη +A(6η2 + 2η3) + C(2η3 + η4))t−1‖∆1‖42 +

B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)

)
= A1

√
Bη

2α−Aη +

(
L2 +A2 +

A3

2

)
Bη

2α−Aη +

(
A3

2
+A4

)
B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)
. (33)

where (i) is due to Assumption (G1), (ii) is due to Cauchy-Schwartz inequality and Assumption (G4), (iii) is due to Assumption
(F2), (iv) is due to Lemmas 1-2.

Then, we have:∥∥∥E[ϕ2ϕ
>
2 ]−H−1GH−1

∥∥∥
2

(i)

≤ t−1
t

∥∥H−1GH−1
∥∥

2
+ t−1

λ2
L
·t

(
A1

√
Bη

2α−Aη +
(
L2 +A2 + A3

2

) Bη

2α−Aη +
(
A3
2

+A4

) B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)

)
= O(

√
η). (34)

where (i) is due to Assumption, and (ii) is after removing constants and observing that the dominant term in the second part is
O(
√
η). Combining all the above in (26), we obtain:∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1

∥∥∥
2
.
√
η +

√
1

tη
+ tη2.

�



C.2 Proof of Corollary 2
Proof of Corollary 2. Here we use the same notations as the proof of Theorem 1. Because linear regression satisfies ∇f(θ)−
H(θ − θ̂) = 0, we do not have to consider the Taylor remainder term in our analysis. And we do not need 4-th order bound for
SGD. Due to the fact that the quadratic function is strongly convex, we have ∆>∇f(∆ + θ̂) ≥ λL‖∆‖22.

By sampling with replacement, we have

E[‖gs(θt)‖22 | θt] = ‖∇f(θt)‖22 + E[‖et‖22 | θt]
= ‖∇f(θt)‖22 + 1

S

(
1
n

∑
‖∇fi(θt)‖22 − ‖∇f(θt)‖22

)
≤ L2(1− 1

S )‖∆t‖22 + 1
S

1
n

∑
‖xi(x>i θt − yi)‖22

= L2(1− 1
S )‖∆t‖22 + 1

S
1
n

∑
‖xix>i ∆t + xix

>
i θ̂ − yixi‖22

≤ L2(1− 1
S )‖∆t‖22 + 2 1

S
1
n

∑
(‖xix>i ∆t‖22 + ‖xix>i θ̂ − yixi‖22)

≤
(
L2(1− 1

S ) + 2 1
S

1
n

∑
‖xi‖42

)
‖∆t‖22 + 2 1

S
1
n

∑
‖xix>i θ̂ − yixi‖22. (35)

We also have∥∥E[gs(θ)gs(θ)
> | θ]−G

∥∥
2

=
∥∥∥ 1
S

1
n

∑
∇fi(θ)fi(θ)> −∇f(θ)∇f(θ)> −G

∥∥∥
2

≤ ‖∇f(θ)‖22 + 1
S

∥∥∥ 1
n

∑
∇fi(θ)fi(θ)> −G

∥∥∥
2

≤ ‖∇f(θ)‖22 + 1
S

∥∥∥ 1
n

∑
(gi +Hi∆)(gi +Hi∆)> −G

∥∥∥
2

≤ ‖∇f(θ)‖22 + 1
S

∥∥∥ 1
n

∑
Hi∆g

>
i + gi∆

>Hi +Hi∆∆>Hi

∥∥∥
2

≤ ‖∇f(θ)‖22 + 1
S

(
2
n‖Hi‖2‖gi‖2

)
‖∆‖2 + 1

S

(
1
n

∑
‖Hi‖22

)
‖∆‖22

≤ 1
S

(
2
n‖Hi‖2‖gi‖2

)
‖∆‖2 +

(
L2 + 1

S
1
n

∑
‖Hi‖22

)
‖∆‖22, (36)

where gi = xi(x
>
i θ̂ − yi) and Hi = xix

>
i .

Following Theorem 1’s proof, we have∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2
.
√
η +

1√
tη
. (37)

C.3 Proof of Corollary 1
Proof of Corollary 1. Here we use the same notations as the proof of Theorem 1. Because ∇2f(θ) = ∇k(θ)∇k(θ)> + (k(θ) +
c)∇2k(θ), f(θ) is convex. The following lemma shows that∇f(θ) = (k(θ) + c)∇k(θ) is Lipschitz.

Lemma 3.

‖∇f(θ)‖2 ≤ L‖∆‖2 (38)

for some data dependent constant L.

Proof. First, because

∇k(θ) = 1
n

∑
− −yixi

1 + exp(yiθ>xi)
, (39)

we have

‖∇k(θ)‖2 ≤ 1
n

∑
‖xi‖2. (40)

Also, we have

‖∇2k(θ)‖2 =

∥∥∥∥ 1
n

∑ exp(yiθ
>xi)

(1 + exp(yiθ>xi))2
xix
>
i

∥∥∥∥
2

≤ 1
4n

∑
‖xi‖22, (41)



which implies

‖∇k(θ)‖2 ≤ 1
4n

∑
‖xi‖22‖∆‖2. (42)

Further:

k(θ) = 1
n

∑
log(1 + exp(−yi∆>xi − yiθ̂>xi))

≤ 1
n

∑
log(1 + exp(‖xi‖2‖∆‖2 − yiθ̂>xi))

(i)

≤ 1
n

∑
(log(1 + exp(−yiθ̂>xi)) + ‖xi‖2‖∆‖2) (43)

where step (i) follows from log(1 + exp(a+ b)) ≤ log(1 + eb) + |a|. Thus, we have

‖∇f(θ)‖2 = ‖(k(θ) + c)∇k(θ)‖2 ≤ k(θ)‖∇k(θ)‖2 + c‖∇k(θ)‖2
≤
(
c+ 1

n

∑
log(1 + exp(−yiθ̂>xi))

)
‖∇k(θ)‖2 +

(
1
n

∑
‖xi‖2

)2

‖∆‖2, (44)

and we can conclude that ‖∇f(θ)‖2 ≤ L‖∆‖2 for some data dependent constant L.

Next, we show that f(θ) has a bounded Taylor remainder.

Lemma 4.

‖∇f(θ)−H(θ − θ̂)‖2 ≤ E‖θ − θ̂‖22, (45)

for some data dependent constant E.

Proof. Because ∇f(θ) = (k(θ) + c)∇k(θ), we know that ‖∇f(θ)‖2 = O(‖∆‖2) when ‖∆‖2 = Ω(1) where the constants
are data dependent. Because f(θ) is infinitely differentiable, by the Taylor expansion we know that ‖∇f(θ)−H(θ − θ̂)‖2 =

O(‖θ − θ̂‖22) when ‖∆‖2 = O(1) where the constants are data dependent. Combining the above, we can conclude ‖∇f(θ)−
H(θ − θ̂)‖2 ≤ E‖θ − θ̂‖22 for some data dependent constant E.

In the following lemma, we will show that∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖22 for some data dependent constant α.

Lemma 5.

∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖22, (46)

for some data dependent constant α.

Proof. We know that

∇f(θ)>∆ = (k(θ) + c)∇k(θ)>∆. (47)

First, notice that locally (when ‖∆‖2 = O(λL

E )) we have

∇k(θ)>∆ & ∆>H∆ & λL‖∆‖22, (48)

because of the optimality condition. This lower bounds ∇f(θ)>(θ − θ̂) when ‖∆‖2 = O(λL

E ). Next we will lower bound it
when ‖∆‖2 = Ω(λL

E ).
Consider the function for t ∈ [0,∞), we have

g(t) = ∇f(θ̂ + ut)>ut

= (k(θ̂ + ut) + c)∇k(θ̂ + ut)>ut

= k(θ̂ + ut)∇k(θ̂ + ut)>ut+ c∇k(θ̂ + ut)>ut, (49)

where u = ∆
‖∆‖2 . Because k(θ) is convex, ∇k(θ̂ + ut)>u is an increasing function in t, thus we have∇k(θ̂ + ut)>u = Ω(

λ2
L

E )

when t = Ω(λL

E ). And we can deduce ∇k(θ̂ + ut)>ut = Ω(
λ2
L

E t) when t = Ω(λL

E ).

Similarly, because k(θ) is convex, k(θ̂ + ut) is an increasing function in t. Its derivative ∇k(θ̂ + ut)>u = Ω(
λ2
L

E ) when

t = Ω(λL

E ). So we have k(θ̂ + ut) = Ω(
λ2
L

E t) when t = Ω(λL

E ).



Thus, we have

k(θ̂ + ut)∇k(θ̂ + ut)>ut = Ω

(
λ4
L

E2
t2
)
, (50)

when t = Ω( EλL
).

And we can conclude that∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖22 for some data dependent constant α = Ω(min{λL, λ
4
L

E2 }).

Next, we will prove properties about gs = ΨsΥs.

E[‖Υ‖22 | θ] =
1

SΥ

(
1
n

∑
‖∇ki(θ)‖22 − ‖∇k(θ)‖22

)
+ ‖∇k(θ)‖22 . 1

n‖xi‖22 (51)

E[Ψ2
s]

(i)

≤ 1
n

∑
(c+ ki(θ))

2

= 1
n

∑(
c+ log(1 + exp(−yiθ̂>xi − yi∆xi))

)2

(ii)

. 1
n

∑
‖xi‖2‖∆‖22 + 1

n

∑
(c+ log(1 + exp(−yiθ̂>xi)))2, (52)

where (i) follows from E

[(∑S
j=1 Xj

S

)2
]
≤ E

[∑S
j=1 X

2
j

S

]
and (ii) follows from log(1 + exp(a+ b)) ≤ log(1 + eb) + |a|.

Thus, we have

E[‖gs‖22(θ) | θ] = E[Ψ2 | θ] · E[‖Υ‖22 | θ] . A‖∆‖22 +B (53)

for some data dependent constants A and B.
For the fourth-moment quantities, we have:

E[‖Υ‖42 | θ] = E


∥∥∥∥∥∥ 1

SΥ

∑
i∈IΥ

t

∇ log(1 + exp(−yiθ>xi))

∥∥∥∥∥∥
4

2


≤ E


 1

SΥ

∑
i∈IΥ

t

‖∇ log(1 + exp(−yiθ>xi))‖2

4


≤ E


 1

SΥ

∑
i∈IΥ

t

‖xi‖2

4
 ≤ 1

n

∑
‖xi‖42. (54)

E[Ψ4
s]

(i)

≤ 1
n

∑
(c+ ki(θ))

4 = 1
n

∑(
c+ log(1 + exp(−yiθ̂>xi − yi∆xi))

)4

(ii)

. 1
n

∑
‖xi‖4‖∆‖42 + 1

n

∑(
c+ log(1 + exp(−yiθ̂>xi))

)4

, (55)

‘where (i) follows from E

[(∑S
j=1 Xj

S

)4
]
≤ E

[∑S
j=1 X

4
j

S

]
and (ii) follows from log(1 + exp(a+ b)) ≤ log(1 + eb) + |a|.

Combining the above, we get:

E[‖gs‖42(θ) | θ] = E
[
Ψ4 | θ

]
· E
[
‖Υ‖42 | θ

]
. C‖∆‖42 +D, (56)

for some data dependent constants C and D.



Finally, we need a bound for the quantity ‖E[∇gs(θ)∇gs(θ)>]−G‖2. We observe:∥∥E[∇gs(θ)∇gs(θ)>]−G
∥∥

2
≤
∥∥∥KG(θ)

n

∑
∇ki(θ)∇ki(θ)> − KG(θ̂)

n

∑
∇ki(θ̂)∇ki(θ̂)>

∥∥∥
2

≤
∥∥∥KG(θ)

n

∑
∇ki(θ)∇ki(θ)> − KG(θ)

n

∑
∇ki(θ̂)∇ki(θ̂)>

+ KG(θ)
n

∑
∇ki(θ̂)∇ki(θ̂)> − KG(θ̂)

n

∑
∇ki(θ̂)∇ki(θ̂)>

∥∥∥
2

≤ KG(θ)
n

∥∥∥∑(
∇ki(θ)∇ki(θ)> −∇ki(θ̂)∇ki(θ̂)>

)∥∥∥
2

+ |KG(θ)−KG(θ̂)| ·
∥∥∥ 1
n

∑
∇ki(θ̂)∇ki(θ̂)>

∥∥∥
2
. (57)

Because

KG(θ) = O(1 + ‖∆‖2 + ‖∆‖22), (58)
1
n

∥∥∥∑(∇ki(θ)∇ki(θ)> −∇ki(θ̂)∇ki(θ̂)>)
∥∥∥

2
= O(‖∆‖2 + ‖∆‖22), (59)

|KG(θ)−KG(θ̂)| = O(‖∆‖2 + ‖∆‖22), (60)

we may conclude that

‖E[gs(θ)gs(θ)
> | θ]−G‖2 ≤ A1‖θ − θ̂‖2 +A2‖θ − θ̂‖22 +A3‖θ − θ̂‖32 +A4‖θ − θ̂‖42, (61)

for some data dependent constants A1, A2, A3, and A4.
Combining above results and using Theorem 1, we have∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1

∥∥∥
2
.
√
η +

√
1

tη
+ tη2. (62)

D Experiments
Here we present additional experiments on our SGD inference procedure.

D.1 Synthetic data
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(a) Normal.
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(b) Exponential.
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(c) Poisson.

Figure 5: Estimation in univariate models: Q-Q plots for samples shown in Figure 2

Figure 5 shows Q-Q plots for samples shown in Figure 2.

Multivariate models Here we show Q-Q plots per coordinate for samples from our SGD inference procedure.
Q-Q plots per coordinate for samples in linear regression experiment 1 is shown in Figure 6. Q-Q plots per coordinate for

samples in linear regression experiment 2 is shown in Figure 7.
Q-Q plots per coordinate for samples in logistic regression experiment 1 is shown in Figure 8. Q-Q plots per coordinate for

samples in logistic regression experiment 2 is shown in Figure 9.
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Figure 6: Linear regression experiment 1: Q-Q plots per coordinate
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Figure 7: Linear regression experiment 2: Q-Q plots per coordinate

Additional experiments
2-Dimensional Linear Regression. Consider:

y = x1 + x2 + ε, where
[
x1

x2

]
∼ N

(
0,

[
1 0.8

0.8 1

])
and ε ∼ N (0, σ2 = 102).

Each sample consists of Y = y and X = [x1, x2]>. We use linear regression to estimate w1, w2 in y = w1x1 + w2x2. In
this case, the minimizer of the population least square risk is w?1 = 1, w?2 = 1.

For 300 i.i.d. samples, we plotted 100 samples from SGD inference in Figure 10. We compare our SGD inference procedure
against bootstrap in Figure 10a. Figure 10b and Figure 10c show samples from our SGD inference procedure with different
parameters.

10-Dimensional Linear Regression.
Here we consider the following model

y = x>w? + ε,

where w? = 1√
10

[1, 1, · · · , 1]> ∈ R10, x ∼ N (0,Σ) with Σij = 0.8|i−j|, and ε ∼ N (0, σ2 = 202), and use n = 1000

samples. We estimate the parameter using

ŵ = argmin
w

1

n

n∑
i=1

1
2 (x>i w − yi)2.

Figure 11 shows the diagonal terms of of the covariance matrix computed using the sandwich estimator and our SGD inference
procedure with different parameters. 100000 samples from our SGD inference procedure are used to reduce the effect of
randomness.

2-Dimensional Logistic Regression.
Here we consider the following model

P[Y = +1] = P[Y = −1] =
1

2
, X | Y ∼ N

(
µ = 1.1 + 0.1Y, σ2 = 1

)
. (63)
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Figure 8: Logistic regression experiment 1: Q-Q plots per coordinate

2 1 0 1 2
Theoretical Quantiles

0.2

0.1

0.0

0.1

0.2

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2
Theoretical Quantiles

0.15

0.10

0.05

0.00

0.05

0.10

0.15

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2
Theoretical Quantiles

0.1

0.0

0.1

0.2

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2
Theoretical Quantiles

0.20

0.15

0.10

0.05

0.00

0.05

0.10

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2
Theoretical Quantiles

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2
Theoretical Quantiles

0.1

0.0

0.1

0.2

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2
Theoretical Quantiles

0.1

0.0

0.1

0.2

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2
Theoretical Quantiles

0.2

0.1

0.0

0.1

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2
Theoretical Quantiles

0.1

0.0

0.1

0.2

0.3

S
am

pl
e 

Q
ua

nt
ile

s

2 1 0 1 2
Theoretical Quantiles

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

S
am

pl
e 

Q
ua

nt
ile

s

Figure 9: Logistic regression experiment 2: Q-Q plots per coordinate

We use logistic regression to estimate w, b in the classifier sign(wx+ b) where the minimizer of the population logistic risk is
w? = 0.2, b? = −0.22.

For 100 i.i.d. samples, we plot 1000 samples from SGD in Figure 12. In our simulations, we notice that our modified
SGD for logistic regression behaves similar to vanilla logistic regression. T his suggests that an assumption weaker than
(θ− θ̂)>∇f(θ) ≥ α‖θ− θ̂‖22 (assumption (F1) in Theorem 1) is sufficient for SGD analysis. Figure 12b and Figure 12d suggest
that the tη2 term in Corollary 1 is an artifact of our analysis, and can be improved.

11-Dimensional Logistic Regression.
Here we consider the following model

P[Y = +1] = P[Y = −1] =
1

2
, X | Y ∼ N (0.01Y µ,Σ) ,
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(a) SGD inference vs. bootstrap
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Figure 10: 2-dimensional linear regression
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Figure 11: 11-dimensional linear regression: covariance matrix diagonal terms of SGD inference and sandwich estimator

where Σii = 1 and when i 6= j Σij = ρ|i−j| for some ρ ∈ [0, 1), and µ = 1√
10

[1, 1, · · · , 1]> ∈ R10. We estimate a classifier
sign(w>x+ b) using

ŵ, b̂ = argmin
w,b

1

n

n∑
i=1

log
(
1 + exp(−Yi(w>Xi + b))

)
. (64)

Figure 13 shows results for ρ = 0 with n = 80 samples. We use t = 100, d = 70, η = 0.8, and mini batch of size 4 in vanilla
SGD. Bootstrap and our SGD inference procedure each generated 2000 samples. In bootstrap, we used Newton method to
perform optimization over each replicate, and 6-7 iterations were used. In figure 14, we follow the same procedure for ρ = 0.6
with n = 80 samples. Here, we use t = 200, d = 70, η = 0.85; the rest of the setting is the same.

D.2 Real data
Here, we compare covariance matrix computed using our SGD inference procedure, bootstrap, and inverse Fisher information
matrix on the Higgs data set (Baldi, Sadowski, and Whiteson, 2014) and the LIBSVM Splice data set, and we observe that they
have similar statistical properties.

Higgs data set The Higgs data set 4 (Baldi, Sadowski, and Whiteson, 2014) contains 28 distinct features with 11,000,000 data
samples. This is a classification problem between two types of physical processes: one produces Higgs bosons and the other is a
background process that does not. We use a logistic regression model, trained using vanilla SGD, instead of the modified SGD
described in Section 3.3.

To understand different settings of sample size, we subsampled the data set with different sample size levels: n = 200 and
n = 50000. We investigate the empirical performance of SGD inference on this subsampled data set. In all experiments below,
the batch size of the mini batch SGD is 10.

In the case n = 200, the asymptotic normality for the MLE is not a good enough approximation. Hence, in this small-sample
inference, we compare the SGD inference covariance matrix with the one obtained by inverse Fisher information matrix and
bootstrap in Figure 15.

For our SGD inference procedure, we use t = 100 samples to average, and discard d = 50 samples. We use R = 20 averages
from 20 segments (as in Figure 1). For bootstrap, we use 2000 replicates, which is much larger than the sample size n = 200.

4https://archive.ics.uci.edu/ml/datasets/HIGGS

https://archive.ics.uci.edu/ml/datasets/HIGGS
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Figure 12: 2-dimensional logistic regression

Figure 15 shows that the covariance matrix obtained by SGD inference is comparable to the estimation given by bootstrap and
inverse Fisher information.

In the case n = 50000, we use t = 5000 samples to average, and discard d = 500 samples. We use R = 20 averages from 20
segments (as in Figure 1). For this large data set, we present the estimated covariance of SGD inference procedure and inverse
Fisher information (the asymptotic covariance) in Figure 16 because bootstrap is computationally prohibitive. Similar to the
small sample result in Figure 15, the covariance of our SGD inference procedure is comparable to the inverse Fisher information.

In Figure 17, we compare the covariance matrix computed using our SGD inference procedure and inverse Fisher information
with n = 90000 samples . We used 25 samples from our SGD inference procedure with t = 5000, d = 1000, η = 0.2, and mini
batch size of 10.

Splice data set The Splice data set 5 contains 60 distinct features with 1000 data samples. This is a classification problem
between two classes of splice junctions in a DNA sequence. Similar to the Higgs data set, we use a logistic regression model,
trained using vanilla SGD.

5https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
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Figure 13: 11-dimensional logistic regression: ρ = 0

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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(b) Bootstrap estimated covariance
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Figure 14: 11-dimensional logistic regression: ρ = 0.6
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(a) Inverse Fisher information
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(b) SGD inference covariance
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(c) Bootstrap estimated covariance

Figure 15: Higgs data set with n = 200

In Figure 18, we compare the covariance matrix computed using our SGD inference procedure and bootstrap n = 1000
samples. We used 10000 samples from both bootstrap and our SGD inference procedure with t = 500, d = 100, η = 0.2, and
mini batch size of 6.

MNIST Here, we train a binary logistic regression classifier to classify 0/1 using perturbed MNIST data set, and demonstrate
that certain adversarial examples (e.g. (Goodfellow, Shlens, and Szegedy, 2015)) can be detected using prediction confidence
intervals. For each image, where each original pixel is either 0 or 1, we randomly changed 70% pixels to random numbers
uniformly on [0, 0.9]. Figure 19 shows each image’s logit value (log P[1|image]

P[0|image] ) and its 95% confidence interval computed using
our SGD inference procedure. The adversarial perturbation used here is shown in Figure 20 (scaled for display).
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(a) Inverse Fisher information
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(b) SGD inference covariance

Figure 16: Higgs data set with n = 50000
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Figure 17: Higgs data set with n = 90000
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(a) Bootstrap
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Figure 18: Splice data set



0 5 10 15 20 25

0

5

10

15

20

25

(a) Original “0”: logit -72.6,
CI (-106.4, -30.0)
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(b) Adversarial “0”: logit 15.3,
CI (-6.5, 26.2)

0 5 10 15 20 25

0

5

10

15

20

25

(c) Original “0”: logit -62.1,
CI (-101.6, -5.5)
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(d) Adversarial “0”: logit 1.9,
CI (-4.9, 11.6)
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(e) Original “0”: logit -42.9,
CI (-75.4, 5.1)
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(f) Adversarial “0”: logit 4.8,
CI (-3.4, 17.9)
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(g) Original “0”: logit -77.0,
CI (-110.7, -32.2)
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(h) Adversarial “0”: logit 13.3,
CI (-8.0, 25.7)

Figure 19: MNIST
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Figure 20: MNIST adversarial perturbation (scaled for display)
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